Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment
The invention relates to the technical field of transformer substation fault monitoring, in particular to a transformer substation fault analysis and early warning method and device, a storage medium and electronic equipment, and the method comprises the steps: carrying out the feature selection of...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GAO CONG SHEN XIAOYONG XIA YONGPING MAJNI, TOLIVBEK MAIMAITI NOOR QU XIANGYUN ZHU MENGYAO CHENG PEIZHONG YANG YANPING GUO TINGJIN DUAN PENGFEI XU JIANYING ZHENG YINGYING XU LIN YU XIANGTAO |
description | The invention relates to the technical field of transformer substation fault monitoring, in particular to a transformer substation fault analysis and early warning method and device, a storage medium and electronic equipment, and the method comprises the steps: carrying out the feature selection of to-be-analyzed transformer substation fault data through employing a Boruta algorithm; inputting the to-be-analyzed transformer substation fault data features after feature selection into a fault prediction model, and outputting a corresponding transformer substation fault; and inputting the transformer substation fault into the risk judgment model for fault risk level prediction. According to the method, the Boruta algorithm is used for carrying out feature selection on the transformer substation fault data, the data set dimension and the calculation complexity are reduced, the extreme learning machine is used for carrying out transformer substation fault prediction, and the Markov chain and the fuzzy matrix are c |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118627884A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118627884A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118627884A3</originalsourceid><addsrcrecordid>eNqNizEOwjAMRbswIOAOYYehgKArqkBMTN0rk7olUuIU2wH19lTAAZjel95_04wrBpI2ckA2km6ioC6SaSF5NUDgB3EyjsYgsB_MC5gcdSag3mPzEQ0-ncWVEY0MHY6qcSl8G49WOZKzBh_J9QFJ59mkBS-4-HGWLc-nqryssY81Sg8WCbUur3le7DeHotgdt_983lxnRNE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment</title><source>esp@cenet</source><creator>GAO CONG ; SHEN XIAOYONG ; XIA YONGPING ; MAJNI, TOLIVBEK ; MAIMAITI NOOR ; QU XIANGYUN ; ZHU MENGYAO ; CHENG PEIZHONG ; YANG YANPING ; GUO TINGJIN ; DUAN PENGFEI ; XU JIANYING ; ZHENG YINGYING ; XU LIN ; YU XIANGTAO</creator><creatorcontrib>GAO CONG ; SHEN XIAOYONG ; XIA YONGPING ; MAJNI, TOLIVBEK ; MAIMAITI NOOR ; QU XIANGYUN ; ZHU MENGYAO ; CHENG PEIZHONG ; YANG YANPING ; GUO TINGJIN ; DUAN PENGFEI ; XU JIANYING ; ZHENG YINGYING ; XU LIN ; YU XIANGTAO</creatorcontrib><description>The invention relates to the technical field of transformer substation fault monitoring, in particular to a transformer substation fault analysis and early warning method and device, a storage medium and electronic equipment, and the method comprises the steps: carrying out the feature selection of to-be-analyzed transformer substation fault data through employing a Boruta algorithm; inputting the to-be-analyzed transformer substation fault data features after feature selection into a fault prediction model, and outputting a corresponding transformer substation fault; and inputting the transformer substation fault into the risk judgment model for fault risk level prediction. According to the method, the Boruta algorithm is used for carrying out feature selection on the transformer substation fault data, the data set dimension and the calculation complexity are reduced, the extreme learning machine is used for carrying out transformer substation fault prediction, and the Markov chain and the fuzzy matrix are c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118627884A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118627884A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO CONG</creatorcontrib><creatorcontrib>SHEN XIAOYONG</creatorcontrib><creatorcontrib>XIA YONGPING</creatorcontrib><creatorcontrib>MAJNI, TOLIVBEK</creatorcontrib><creatorcontrib>MAIMAITI NOOR</creatorcontrib><creatorcontrib>QU XIANGYUN</creatorcontrib><creatorcontrib>ZHU MENGYAO</creatorcontrib><creatorcontrib>CHENG PEIZHONG</creatorcontrib><creatorcontrib>YANG YANPING</creatorcontrib><creatorcontrib>GUO TINGJIN</creatorcontrib><creatorcontrib>DUAN PENGFEI</creatorcontrib><creatorcontrib>XU JIANYING</creatorcontrib><creatorcontrib>ZHENG YINGYING</creatorcontrib><creatorcontrib>XU LIN</creatorcontrib><creatorcontrib>YU XIANGTAO</creatorcontrib><title>Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment</title><description>The invention relates to the technical field of transformer substation fault monitoring, in particular to a transformer substation fault analysis and early warning method and device, a storage medium and electronic equipment, and the method comprises the steps: carrying out the feature selection of to-be-analyzed transformer substation fault data through employing a Boruta algorithm; inputting the to-be-analyzed transformer substation fault data features after feature selection into a fault prediction model, and outputting a corresponding transformer substation fault; and inputting the transformer substation fault into the risk judgment model for fault risk level prediction. According to the method, the Boruta algorithm is used for carrying out feature selection on the transformer substation fault data, the data set dimension and the calculation complexity are reduced, the extreme learning machine is used for carrying out transformer substation fault prediction, and the Markov chain and the fuzzy matrix are c</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAMRbswIOAOYYehgKArqkBMTN0rk7olUuIU2wH19lTAAZjel95_04wrBpI2ckA2km6ioC6SaSF5NUDgB3EyjsYgsB_MC5gcdSag3mPzEQ0-ncWVEY0MHY6qcSl8G49WOZKzBh_J9QFJ59mkBS-4-HGWLc-nqryssY81Sg8WCbUur3le7DeHotgdt_983lxnRNE</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>GAO CONG</creator><creator>SHEN XIAOYONG</creator><creator>XIA YONGPING</creator><creator>MAJNI, TOLIVBEK</creator><creator>MAIMAITI NOOR</creator><creator>QU XIANGYUN</creator><creator>ZHU MENGYAO</creator><creator>CHENG PEIZHONG</creator><creator>YANG YANPING</creator><creator>GUO TINGJIN</creator><creator>DUAN PENGFEI</creator><creator>XU JIANYING</creator><creator>ZHENG YINGYING</creator><creator>XU LIN</creator><creator>YU XIANGTAO</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment</title><author>GAO CONG ; SHEN XIAOYONG ; XIA YONGPING ; MAJNI, TOLIVBEK ; MAIMAITI NOOR ; QU XIANGYUN ; ZHU MENGYAO ; CHENG PEIZHONG ; YANG YANPING ; GUO TINGJIN ; DUAN PENGFEI ; XU JIANYING ; ZHENG YINGYING ; XU LIN ; YU XIANGTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118627884A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO CONG</creatorcontrib><creatorcontrib>SHEN XIAOYONG</creatorcontrib><creatorcontrib>XIA YONGPING</creatorcontrib><creatorcontrib>MAJNI, TOLIVBEK</creatorcontrib><creatorcontrib>MAIMAITI NOOR</creatorcontrib><creatorcontrib>QU XIANGYUN</creatorcontrib><creatorcontrib>ZHU MENGYAO</creatorcontrib><creatorcontrib>CHENG PEIZHONG</creatorcontrib><creatorcontrib>YANG YANPING</creatorcontrib><creatorcontrib>GUO TINGJIN</creatorcontrib><creatorcontrib>DUAN PENGFEI</creatorcontrib><creatorcontrib>XU JIANYING</creatorcontrib><creatorcontrib>ZHENG YINGYING</creatorcontrib><creatorcontrib>XU LIN</creatorcontrib><creatorcontrib>YU XIANGTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO CONG</au><au>SHEN XIAOYONG</au><au>XIA YONGPING</au><au>MAJNI, TOLIVBEK</au><au>MAIMAITI NOOR</au><au>QU XIANGYUN</au><au>ZHU MENGYAO</au><au>CHENG PEIZHONG</au><au>YANG YANPING</au><au>GUO TINGJIN</au><au>DUAN PENGFEI</au><au>XU JIANYING</au><au>ZHENG YINGYING</au><au>XU LIN</au><au>YU XIANGTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment</title><date>2024-09-10</date><risdate>2024</risdate><abstract>The invention relates to the technical field of transformer substation fault monitoring, in particular to a transformer substation fault analysis and early warning method and device, a storage medium and electronic equipment, and the method comprises the steps: carrying out the feature selection of to-be-analyzed transformer substation fault data through employing a Boruta algorithm; inputting the to-be-analyzed transformer substation fault data features after feature selection into a fault prediction model, and outputting a corresponding transformer substation fault; and inputting the transformer substation fault into the risk judgment model for fault risk level prediction. According to the method, the Boruta algorithm is used for carrying out feature selection on the transformer substation fault data, the data set dimension and the calculation complexity are reduced, the extreme learning machine is used for carrying out transformer substation fault prediction, and the Markov chain and the fuzzy matrix are c</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118627884A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Transformer substation fault analysis and early warning method and device, storage medium and electronic equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20CONG&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118627884A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |