Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium

The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MIAO ZHENWEI, ZHANG JIQI, WANG QI, LIANG JIAMING, JIANG BIN, QING QUAN, PANG JIANGNAN, GUO KE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MIAO ZHENWEI
ZHANG JIQI
WANG QI
LIANG JIAMING
JIANG BIN
QING QUAN
PANG JIANGNAN
GUO KE
description The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118626778A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118626778A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118626778A3</originalsourceid><addsrcrecordid>eNqNy7sKwkAUhOE0FqK-w7HXIgpJWgmKlVX6cNwdk5Xshc2J4BP42iaQ0sJq4Ge-ZfKpIj-hxMc3hQhtlBjvyHqNjiSyccY1ZCGt1zsSjg1k6r_MfFLehkEmpvEyCsROzxGRIljzvQP1o-cGI9NmsOtk8eCux2beVbK9nKvyukfwNfrACg5Sl7c0LbJDlufF6fjP5ws_hE0W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><source>esp@cenet</source><creator>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</creator><creatorcontrib>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</creatorcontrib><description>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118626778A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=CN&amp;NR=118626778A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIAO ZHENWEI</creatorcontrib><creatorcontrib>ZHANG JIQI</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>LIANG JIAMING</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>QING QUAN</creatorcontrib><creatorcontrib>PANG JIANGNAN</creatorcontrib><creatorcontrib>GUO KE</creatorcontrib><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><description>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7sKwkAUhOE0FqK-w7HXIgpJWgmKlVX6cNwdk5Xshc2J4BP42iaQ0sJq4Ge-ZfKpIj-hxMc3hQhtlBjvyHqNjiSyccY1ZCGt1zsSjg1k6r_MfFLehkEmpvEyCsROzxGRIljzvQP1o-cGI9NmsOtk8eCux2beVbK9nKvyukfwNfrACg5Sl7c0LbJDlufF6fjP5ws_hE0W</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>MIAO ZHENWEI</creator><creator>ZHANG JIQI</creator><creator>WANG QI</creator><creator>LIANG JIAMING</creator><creator>JIANG BIN</creator><creator>QING QUAN</creator><creator>PANG JIANGNAN</creator><creator>GUO KE</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><author>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118626778A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MIAO ZHENWEI</creatorcontrib><creatorcontrib>ZHANG JIQI</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>LIANG JIAMING</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>QING QUAN</creatorcontrib><creatorcontrib>PANG JIANGNAN</creatorcontrib><creatorcontrib>GUO KE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIAO ZHENWEI</au><au>ZHANG JIQI</au><au>WANG QI</au><au>LIANG JIAMING</au><au>JIANG BIN</au><au>QING QUAN</au><au>PANG JIANGNAN</au><au>GUO KE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><date>2024-09-10</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118626778A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIAO%20ZHENWEI&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118626778A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true