Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium
The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIAO ZHENWEI ZHANG JIQI WANG QI LIANG JIAMING JIANG BIN QING QUAN PANG JIANGNAN GUO KE |
description | The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118626778A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118626778A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118626778A3</originalsourceid><addsrcrecordid>eNqNy7sKwkAUhOE0FqK-w7HXIgpJWgmKlVX6cNwdk5Xshc2J4BP42iaQ0sJq4Ge-ZfKpIj-hxMc3hQhtlBjvyHqNjiSyccY1ZCGt1zsSjg1k6r_MfFLehkEmpvEyCsROzxGRIljzvQP1o-cGI9NmsOtk8eCux2beVbK9nKvyukfwNfrACg5Sl7c0LbJDlufF6fjP5ws_hE0W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><source>esp@cenet</source><creator>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</creator><creatorcontrib>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</creatorcontrib><description>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118626778A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=CN&NR=118626778A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIAO ZHENWEI</creatorcontrib><creatorcontrib>ZHANG JIQI</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>LIANG JIAMING</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>QING QUAN</creatorcontrib><creatorcontrib>PANG JIANGNAN</creatorcontrib><creatorcontrib>GUO KE</creatorcontrib><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><description>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7sKwkAUhOE0FqK-w7HXIgpJWgmKlVX6cNwdk5Xshc2J4BP42iaQ0sJq4Ge-ZfKpIj-hxMc3hQhtlBjvyHqNjiSyccY1ZCGt1zsSjg1k6r_MfFLehkEmpvEyCsROzxGRIljzvQP1o-cGI9NmsOtk8eCux2beVbK9nKvyukfwNfrACg5Sl7c0LbJDlufF6fjP5ws_hE0W</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>MIAO ZHENWEI</creator><creator>ZHANG JIQI</creator><creator>WANG QI</creator><creator>LIANG JIAMING</creator><creator>JIANG BIN</creator><creator>QING QUAN</creator><creator>PANG JIANGNAN</creator><creator>GUO KE</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><author>MIAO ZHENWEI ; ZHANG JIQI ; WANG QI ; LIANG JIAMING ; JIANG BIN ; QING QUAN ; PANG JIANGNAN ; GUO KE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118626778A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MIAO ZHENWEI</creatorcontrib><creatorcontrib>ZHANG JIQI</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>LIANG JIAMING</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>QING QUAN</creatorcontrib><creatorcontrib>PANG JIANGNAN</creatorcontrib><creatorcontrib>GUO KE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIAO ZHENWEI</au><au>ZHANG JIQI</au><au>WANG QI</au><au>LIANG JIAMING</au><au>JIANG BIN</au><au>QING QUAN</au><au>PANG JIANGNAN</au><au>GUO KE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium</title><date>2024-09-10</date><risdate>2024</risdate><abstract>The embodiment of the invention provides a trajectory prediction model training method, a target trajectory prediction method, computing equipment and a computer readable storage medium. The trajectory prediction model training method comprises the steps of determining sample driving data and label driving data of a plurality of sample objects; inputting the sample driving data of each sample object into a data enhancement model to obtain sample enhanced driving data of each sample object; inputting the sample enhanced driving data of each sample object into a trajectory prediction model to obtain sample predicted driving data of each sample object; updating a training track prediction model according to the sample prediction driving data and the label driving data, and updating a training data enhancement model according to the sample prediction driving data and the sample driving data; and continuing to execute the step of inputting the sample driving data of each sample object into the data enhancement mod</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118626778A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Trajectory prediction model training method, target trajectory prediction method, computing device and computer readable storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIAO%20ZHENWEI&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118626778A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |