Deep learning-based personnel retrograde running detection method in electronic escalator running process

The invention discloses a deep learning-based personnel retrograde driving detection method in an electronic escalator operation process, which comprises the following steps of: inputting a collected personnel image on an electronic escalator into a target identification network model to obtain cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YINRUI, ZHANG HUAYU, DAI HAOWEI, LU HAIYANG, CHENG YUAN, LIANG ANYANG, YANG MINGLUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YINRUI
ZHANG HUAYU
DAI HAOWEI
LU HAIYANG
CHENG YUAN
LIANG ANYANG
YANG MINGLUN
description The invention discloses a deep learning-based personnel retrograde driving detection method in an electronic escalator operation process, which comprises the following steps of: inputting a collected personnel image on an electronic escalator into a target identification network model to obtain continuous multi-frame personnel position information; damping, filtering and matching are carried out on continuous multi-frame personnel position information, and personnel tracking information of continuous multi-frame images is obtained; and in combination with the personnel tracking information of the continuous multi-frame image and the identified running direction of the electronic escalator, a retrograde moving sample range is obtained, and the movement direction of the personnel is judged based on the retrograde moving sample range. According to the method, the deep learning technology is utilized, the image data in the operation process of the electronic escalator is learned, an algorithm and a system framewo
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118609154A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118609154A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118609154A3</originalsourceid><addsrcrecordid>eNqNi70KAjEQBq-xEPUd1gc48PAHLeVUrKzsjzX57gzE3bCJ76-CWFsNDDPjKhyARBFsEmSob5zhKcGyiiCSoZgOxh5kT_kk5FHgSlChB8pdPQUhxLcyleAI2XHkovYbkqlDztNq1HPMmH05qean47U910jaISd2EJSuvTTNdrPYNevVfvlP8wLEfEGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based personnel retrograde running detection method in electronic escalator running process</title><source>esp@cenet</source><creator>WANG YINRUI ; ZHANG HUAYU ; DAI HAOWEI ; LU HAIYANG ; CHENG YUAN ; LIANG ANYANG ; YANG MINGLUN</creator><creatorcontrib>WANG YINRUI ; ZHANG HUAYU ; DAI HAOWEI ; LU HAIYANG ; CHENG YUAN ; LIANG ANYANG ; YANG MINGLUN</creatorcontrib><description>The invention discloses a deep learning-based personnel retrograde driving detection method in an electronic escalator operation process, which comprises the following steps of: inputting a collected personnel image on an electronic escalator into a target identification network model to obtain continuous multi-frame personnel position information; damping, filtering and matching are carried out on continuous multi-frame personnel position information, and personnel tracking information of continuous multi-frame images is obtained; and in combination with the personnel tracking information of the continuous multi-frame image and the identified running direction of the electronic escalator, a retrograde moving sample range is obtained, and the movement direction of the personnel is judged based on the retrograde moving sample range. According to the method, the deep learning technology is utilized, the image data in the operation process of the electronic escalator is learned, an algorithm and a system framewo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240906&amp;DB=EPODOC&amp;CC=CN&amp;NR=118609154A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240906&amp;DB=EPODOC&amp;CC=CN&amp;NR=118609154A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YINRUI</creatorcontrib><creatorcontrib>ZHANG HUAYU</creatorcontrib><creatorcontrib>DAI HAOWEI</creatorcontrib><creatorcontrib>LU HAIYANG</creatorcontrib><creatorcontrib>CHENG YUAN</creatorcontrib><creatorcontrib>LIANG ANYANG</creatorcontrib><creatorcontrib>YANG MINGLUN</creatorcontrib><title>Deep learning-based personnel retrograde running detection method in electronic escalator running process</title><description>The invention discloses a deep learning-based personnel retrograde driving detection method in an electronic escalator operation process, which comprises the following steps of: inputting a collected personnel image on an electronic escalator into a target identification network model to obtain continuous multi-frame personnel position information; damping, filtering and matching are carried out on continuous multi-frame personnel position information, and personnel tracking information of continuous multi-frame images is obtained; and in combination with the personnel tracking information of the continuous multi-frame image and the identified running direction of the electronic escalator, a retrograde moving sample range is obtained, and the movement direction of the personnel is judged based on the retrograde moving sample range. According to the method, the deep learning technology is utilized, the image data in the operation process of the electronic escalator is learned, an algorithm and a system framewo</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KAjEQBq-xEPUd1gc48PAHLeVUrKzsjzX57gzE3bCJ76-CWFsNDDPjKhyARBFsEmSob5zhKcGyiiCSoZgOxh5kT_kk5FHgSlChB8pdPQUhxLcyleAI2XHkovYbkqlDztNq1HPMmH05qean47U910jaISd2EJSuvTTNdrPYNevVfvlP8wLEfEGz</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>WANG YINRUI</creator><creator>ZHANG HUAYU</creator><creator>DAI HAOWEI</creator><creator>LU HAIYANG</creator><creator>CHENG YUAN</creator><creator>LIANG ANYANG</creator><creator>YANG MINGLUN</creator><scope>EVB</scope></search><sort><creationdate>20240906</creationdate><title>Deep learning-based personnel retrograde running detection method in electronic escalator running process</title><author>WANG YINRUI ; ZHANG HUAYU ; DAI HAOWEI ; LU HAIYANG ; CHENG YUAN ; LIANG ANYANG ; YANG MINGLUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118609154A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YINRUI</creatorcontrib><creatorcontrib>ZHANG HUAYU</creatorcontrib><creatorcontrib>DAI HAOWEI</creatorcontrib><creatorcontrib>LU HAIYANG</creatorcontrib><creatorcontrib>CHENG YUAN</creatorcontrib><creatorcontrib>LIANG ANYANG</creatorcontrib><creatorcontrib>YANG MINGLUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YINRUI</au><au>ZHANG HUAYU</au><au>DAI HAOWEI</au><au>LU HAIYANG</au><au>CHENG YUAN</au><au>LIANG ANYANG</au><au>YANG MINGLUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based personnel retrograde running detection method in electronic escalator running process</title><date>2024-09-06</date><risdate>2024</risdate><abstract>The invention discloses a deep learning-based personnel retrograde driving detection method in an electronic escalator operation process, which comprises the following steps of: inputting a collected personnel image on an electronic escalator into a target identification network model to obtain continuous multi-frame personnel position information; damping, filtering and matching are carried out on continuous multi-frame personnel position information, and personnel tracking information of continuous multi-frame images is obtained; and in combination with the personnel tracking information of the continuous multi-frame image and the identified running direction of the electronic escalator, a retrograde moving sample range is obtained, and the movement direction of the personnel is judged based on the retrograde moving sample range. According to the method, the deep learning technology is utilized, the image data in the operation process of the electronic escalator is learned, an algorithm and a system framewo</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118609154A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Deep learning-based personnel retrograde running detection method in electronic escalator running process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YINRUI&rft.date=2024-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118609154A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true