Improved Swin Transform-based generative adversarial network underwater image enhancement model

Along with continuous deepening of ocean exploration, the underwater image enhancement and recovery technology is paid attention to. The invention provides a generative adversarial network underwater image enhancement model (SwinGAN) based on an improved Swin Transform, aiming at the problems of low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU WENBIN, LI HUI, ZHANG SHU, ZHONG ZHAOMAN, WU JIAYING, WANG CHENXI, JIA BINGZHI, DONG ZIYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU WENBIN
LI HUI
ZHANG SHU
ZHONG ZHAOMAN
WU JIAYING
WANG CHENXI
JIA BINGZHI
DONG ZIYU
description Along with continuous deepening of ocean exploration, the underwater image enhancement and recovery technology is paid attention to. The invention provides a generative adversarial network underwater image enhancement model (SwinGAN) based on an improved Swin Transform, aiming at the problems of low contrast ratio, large noise, color deviation and the like of an underwater image. The method comprises the following steps of: performing bicubic interpolation preprocessing on an underwater image before inputting the underwater image into a generator, segmenting an input feature map into a plurality of non-overlapped local windows on a bottleneck layer, and enhancing local attention while enhancing global information capture and distance dependency relationship by using a double-channel window multi-head self-attention mechanism. And finally, recombining a plurality of windows in a decoder to form a feature map with an original size, and adopting an improved Markov discriminator as a discrimination network in the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118608437A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118608437A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118608437A3</originalsourceid><addsrcrecordid>eNqNjbEOgkAQBWksjPoP6weQSDBKa4hGGxvpyco98CK3R_ZO-H0p_ACrSSaTzDKpb25QP8LQY7JClbKE1qtLnxxm2UGgHO0IYjNCA6vlngRx8vqmjxjoxBFK1nEHgrxYGjhIJOcN-nWyaLkP2Py4SraXc1VeUwy-Rhi4mQ-xLu9ZVhx2xT4_nvJ_mi_0eT3e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Improved Swin Transform-based generative adversarial network underwater image enhancement model</title><source>esp@cenet</source><creator>HU WENBIN ; LI HUI ; ZHANG SHU ; ZHONG ZHAOMAN ; WU JIAYING ; WANG CHENXI ; JIA BINGZHI ; DONG ZIYU</creator><creatorcontrib>HU WENBIN ; LI HUI ; ZHANG SHU ; ZHONG ZHAOMAN ; WU JIAYING ; WANG CHENXI ; JIA BINGZHI ; DONG ZIYU</creatorcontrib><description>Along with continuous deepening of ocean exploration, the underwater image enhancement and recovery technology is paid attention to. The invention provides a generative adversarial network underwater image enhancement model (SwinGAN) based on an improved Swin Transform, aiming at the problems of low contrast ratio, large noise, color deviation and the like of an underwater image. The method comprises the following steps of: performing bicubic interpolation preprocessing on an underwater image before inputting the underwater image into a generator, segmenting an input feature map into a plurality of non-overlapped local windows on a bottleneck layer, and enhancing local attention while enhancing global information capture and distance dependency relationship by using a double-channel window multi-head self-attention mechanism. And finally, recombining a plurality of windows in a decoder to form a feature map with an original size, and adopting an improved Markov discriminator as a discrimination network in the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240906&amp;DB=EPODOC&amp;CC=CN&amp;NR=118608437A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240906&amp;DB=EPODOC&amp;CC=CN&amp;NR=118608437A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU WENBIN</creatorcontrib><creatorcontrib>LI HUI</creatorcontrib><creatorcontrib>ZHANG SHU</creatorcontrib><creatorcontrib>ZHONG ZHAOMAN</creatorcontrib><creatorcontrib>WU JIAYING</creatorcontrib><creatorcontrib>WANG CHENXI</creatorcontrib><creatorcontrib>JIA BINGZHI</creatorcontrib><creatorcontrib>DONG ZIYU</creatorcontrib><title>Improved Swin Transform-based generative adversarial network underwater image enhancement model</title><description>Along with continuous deepening of ocean exploration, the underwater image enhancement and recovery technology is paid attention to. The invention provides a generative adversarial network underwater image enhancement model (SwinGAN) based on an improved Swin Transform, aiming at the problems of low contrast ratio, large noise, color deviation and the like of an underwater image. The method comprises the following steps of: performing bicubic interpolation preprocessing on an underwater image before inputting the underwater image into a generator, segmenting an input feature map into a plurality of non-overlapped local windows on a bottleneck layer, and enhancing local attention while enhancing global information capture and distance dependency relationship by using a double-channel window multi-head self-attention mechanism. And finally, recombining a plurality of windows in a decoder to form a feature map with an original size, and adopting an improved Markov discriminator as a discrimination network in the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEOgkAQBWksjPoP6weQSDBKa4hGGxvpyco98CK3R_ZO-H0p_ACrSSaTzDKpb25QP8LQY7JClbKE1qtLnxxm2UGgHO0IYjNCA6vlngRx8vqmjxjoxBFK1nEHgrxYGjhIJOcN-nWyaLkP2Py4SraXc1VeUwy-Rhi4mQ-xLu9ZVhx2xT4_nvJ_mi_0eT3e</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>HU WENBIN</creator><creator>LI HUI</creator><creator>ZHANG SHU</creator><creator>ZHONG ZHAOMAN</creator><creator>WU JIAYING</creator><creator>WANG CHENXI</creator><creator>JIA BINGZHI</creator><creator>DONG ZIYU</creator><scope>EVB</scope></search><sort><creationdate>20240906</creationdate><title>Improved Swin Transform-based generative adversarial network underwater image enhancement model</title><author>HU WENBIN ; LI HUI ; ZHANG SHU ; ZHONG ZHAOMAN ; WU JIAYING ; WANG CHENXI ; JIA BINGZHI ; DONG ZIYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118608437A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU WENBIN</creatorcontrib><creatorcontrib>LI HUI</creatorcontrib><creatorcontrib>ZHANG SHU</creatorcontrib><creatorcontrib>ZHONG ZHAOMAN</creatorcontrib><creatorcontrib>WU JIAYING</creatorcontrib><creatorcontrib>WANG CHENXI</creatorcontrib><creatorcontrib>JIA BINGZHI</creatorcontrib><creatorcontrib>DONG ZIYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU WENBIN</au><au>LI HUI</au><au>ZHANG SHU</au><au>ZHONG ZHAOMAN</au><au>WU JIAYING</au><au>WANG CHENXI</au><au>JIA BINGZHI</au><au>DONG ZIYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Improved Swin Transform-based generative adversarial network underwater image enhancement model</title><date>2024-09-06</date><risdate>2024</risdate><abstract>Along with continuous deepening of ocean exploration, the underwater image enhancement and recovery technology is paid attention to. The invention provides a generative adversarial network underwater image enhancement model (SwinGAN) based on an improved Swin Transform, aiming at the problems of low contrast ratio, large noise, color deviation and the like of an underwater image. The method comprises the following steps of: performing bicubic interpolation preprocessing on an underwater image before inputting the underwater image into a generator, segmenting an input feature map into a plurality of non-overlapped local windows on a bottleneck layer, and enhancing local attention while enhancing global information capture and distance dependency relationship by using a double-channel window multi-head self-attention mechanism. And finally, recombining a plurality of windows in a decoder to form a feature map with an original size, and adopting an improved Markov discriminator as a discrimination network in the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118608437A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Improved Swin Transform-based generative adversarial network underwater image enhancement model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20WENBIN&rft.date=2024-09-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118608437A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true