Automobile gear defect identification method based on machine vision

The invention provides an automobile gear defect identification method based on machine vision, and relates to the field of computer vision. The invention provides an automobile gear defect identification method. The method comprises the steps of constructing a machine vision detection module, prepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU XUECHANG, WEI XIYUN, WANG ZHUANG, JIANG YONG, LI GANG, LIU JIFEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU XUECHANG
WEI XIYUN
WANG ZHUANG
JIANG YONG
LI GANG
LIU JIFEN
description The invention provides an automobile gear defect identification method based on machine vision, and relates to the field of computer vision. The invention provides an automobile gear defect identification method. The method comprises the steps of constructing a machine vision detection module, preparing an automobile gear defect data set, training the automobile gear defect data set by using a machine vision algorithm and detecting automobile gear defects by using a detection model. Meanwhile, a machine vision detection module is put forward in a machine vision algorithm, a self-attention mechanism, a space attention mechanism and a channel attention mechanism are fused, the attention mechanisms are subjected to operations of convolution, element-by-element addition and the like, feature map weights are properly fused, and the feature map weight is calculated. Therefore, the recognition effect of machine vision in an automobile gear defect recognition scene is improved. 本发明提出了一种基于机器视觉的汽车齿轮缺陷识别方法,涉及计算机视觉领域;本发明
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118587487A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118587487A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118587487A3</originalsourceid><addsrcrecordid>eNrjZHBxLC3Jz81PysxJVUhPTSxSSElNS00uUchMSc0ryUzLTE4syczPU8hNLcnIT1FISixOTVEA8ROTMzLzUhXKMouB0jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwtTC3MTC3NGYGDUAwbcy_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile gear defect identification method based on machine vision</title><source>esp@cenet</source><creator>LIU XUECHANG ; WEI XIYUN ; WANG ZHUANG ; JIANG YONG ; LI GANG ; LIU JIFEN</creator><creatorcontrib>LIU XUECHANG ; WEI XIYUN ; WANG ZHUANG ; JIANG YONG ; LI GANG ; LIU JIFEN</creatorcontrib><description>The invention provides an automobile gear defect identification method based on machine vision, and relates to the field of computer vision. The invention provides an automobile gear defect identification method. The method comprises the steps of constructing a machine vision detection module, preparing an automobile gear defect data set, training the automobile gear defect data set by using a machine vision algorithm and detecting automobile gear defects by using a detection model. Meanwhile, a machine vision detection module is put forward in a machine vision algorithm, a self-attention mechanism, a space attention mechanism and a channel attention mechanism are fused, the attention mechanisms are subjected to operations of convolution, element-by-element addition and the like, feature map weights are properly fused, and the feature map weight is calculated. Therefore, the recognition effect of machine vision in an automobile gear defect recognition scene is improved. 本发明提出了一种基于机器视觉的汽车齿轮缺陷识别方法,涉及计算机视觉领域;本发明</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118587487A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118587487A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU XUECHANG</creatorcontrib><creatorcontrib>WEI XIYUN</creatorcontrib><creatorcontrib>WANG ZHUANG</creatorcontrib><creatorcontrib>JIANG YONG</creatorcontrib><creatorcontrib>LI GANG</creatorcontrib><creatorcontrib>LIU JIFEN</creatorcontrib><title>Automobile gear defect identification method based on machine vision</title><description>The invention provides an automobile gear defect identification method based on machine vision, and relates to the field of computer vision. The invention provides an automobile gear defect identification method. The method comprises the steps of constructing a machine vision detection module, preparing an automobile gear defect data set, training the automobile gear defect data set by using a machine vision algorithm and detecting automobile gear defects by using a detection model. Meanwhile, a machine vision detection module is put forward in a machine vision algorithm, a self-attention mechanism, a space attention mechanism and a channel attention mechanism are fused, the attention mechanisms are subjected to operations of convolution, element-by-element addition and the like, feature map weights are properly fused, and the feature map weight is calculated. Therefore, the recognition effect of machine vision in an automobile gear defect recognition scene is improved. 本发明提出了一种基于机器视觉的汽车齿轮缺陷识别方法,涉及计算机视觉领域;本发明</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxLC3Jz81PysxJVUhPTSxSSElNS00uUchMSc0ryUzLTE4syczPU8hNLcnIT1FISixOTVEA8ROTMzLzUhXKMouB0jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwtTC3MTC3NGYGDUAwbcy_A</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>LIU XUECHANG</creator><creator>WEI XIYUN</creator><creator>WANG ZHUANG</creator><creator>JIANG YONG</creator><creator>LI GANG</creator><creator>LIU JIFEN</creator><scope>EVB</scope></search><sort><creationdate>20240903</creationdate><title>Automobile gear defect identification method based on machine vision</title><author>LIU XUECHANG ; WEI XIYUN ; WANG ZHUANG ; JIANG YONG ; LI GANG ; LIU JIFEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118587487A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU XUECHANG</creatorcontrib><creatorcontrib>WEI XIYUN</creatorcontrib><creatorcontrib>WANG ZHUANG</creatorcontrib><creatorcontrib>JIANG YONG</creatorcontrib><creatorcontrib>LI GANG</creatorcontrib><creatorcontrib>LIU JIFEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU XUECHANG</au><au>WEI XIYUN</au><au>WANG ZHUANG</au><au>JIANG YONG</au><au>LI GANG</au><au>LIU JIFEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile gear defect identification method based on machine vision</title><date>2024-09-03</date><risdate>2024</risdate><abstract>The invention provides an automobile gear defect identification method based on machine vision, and relates to the field of computer vision. The invention provides an automobile gear defect identification method. The method comprises the steps of constructing a machine vision detection module, preparing an automobile gear defect data set, training the automobile gear defect data set by using a machine vision algorithm and detecting automobile gear defects by using a detection model. Meanwhile, a machine vision detection module is put forward in a machine vision algorithm, a self-attention mechanism, a space attention mechanism and a channel attention mechanism are fused, the attention mechanisms are subjected to operations of convolution, element-by-element addition and the like, feature map weights are properly fused, and the feature map weight is calculated. Therefore, the recognition effect of machine vision in an automobile gear defect recognition scene is improved. 本发明提出了一种基于机器视觉的汽车齿轮缺陷识别方法,涉及计算机视觉领域;本发明</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118587487A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Automobile gear defect identification method based on machine vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20XUECHANG&rft.date=2024-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118587487A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true