Model training method and model-based scene flow estimation method

The invention provides a model training method and a model-based scene flow estimation method. The method comprises the following steps: acquiring a point cloud acquired by a sensor at an Nth frame as a source point cloud, and acquiring a point cloud acquired by the sensor at an actual (N + 1) th fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PENG YUNHUI, ZHANG HAO, YU PENGFEI, CHU JIAXIN, ZHANG TIANLEI, FEI WENYUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PENG YUNHUI
ZHANG HAO
YU PENGFEI
CHU JIAXIN
ZHANG TIANLEI
FEI WENYUAN
description The invention provides a model training method and a model-based scene flow estimation method. The method comprises the following steps: acquiring a point cloud acquired by a sensor at an Nth frame as a source point cloud, and acquiring a point cloud acquired by the sensor at an actual (N + 1) th frame as a target point cloud; generating a first anchor frame of a source point cloud and a second anchor frame of a target point cloud, and obtaining motion parameters when the first anchor frame is transformed to the position where the second anchor frame is located; transforming points in the source point cloud according to the motion parameters to obtain a simulated target point cloud; generating a motion vector according to the position of the point in the simulated target point cloud and the position of the point in the target point cloud, and taking the motion vector as a pseudo three-dimensional scene flow label; training based on the three-dimensional scene flow label to obtain a scene flow estimation model
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118587368A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118587368A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118587368A3</originalsourceid><addsrcrecordid>eNrjZHDyzU9JzVEoKUrMzMvMS1fITS3JyE9RSMxLUcgFyegmJRanpigUJ6fmpSqk5eSXK6QWl2TmJpZk5udBFfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigkSQ3pJ4Zz9DQwtTC3NjMwtHY2LUAAAr1jIJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model training method and model-based scene flow estimation method</title><source>esp@cenet</source><creator>PENG YUNHUI ; ZHANG HAO ; YU PENGFEI ; CHU JIAXIN ; ZHANG TIANLEI ; FEI WENYUAN</creator><creatorcontrib>PENG YUNHUI ; ZHANG HAO ; YU PENGFEI ; CHU JIAXIN ; ZHANG TIANLEI ; FEI WENYUAN</creatorcontrib><description>The invention provides a model training method and a model-based scene flow estimation method. The method comprises the following steps: acquiring a point cloud acquired by a sensor at an Nth frame as a source point cloud, and acquiring a point cloud acquired by the sensor at an actual (N + 1) th frame as a target point cloud; generating a first anchor frame of a source point cloud and a second anchor frame of a target point cloud, and obtaining motion parameters when the first anchor frame is transformed to the position where the second anchor frame is located; transforming points in the source point cloud according to the motion parameters to obtain a simulated target point cloud; generating a motion vector according to the position of the point in the simulated target point cloud and the position of the point in the target point cloud, and taking the motion vector as a pseudo three-dimensional scene flow label; training based on the three-dimensional scene flow label to obtain a scene flow estimation model</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118587368A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118587368A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PENG YUNHUI</creatorcontrib><creatorcontrib>ZHANG HAO</creatorcontrib><creatorcontrib>YU PENGFEI</creatorcontrib><creatorcontrib>CHU JIAXIN</creatorcontrib><creatorcontrib>ZHANG TIANLEI</creatorcontrib><creatorcontrib>FEI WENYUAN</creatorcontrib><title>Model training method and model-based scene flow estimation method</title><description>The invention provides a model training method and a model-based scene flow estimation method. The method comprises the following steps: acquiring a point cloud acquired by a sensor at an Nth frame as a source point cloud, and acquiring a point cloud acquired by the sensor at an actual (N + 1) th frame as a target point cloud; generating a first anchor frame of a source point cloud and a second anchor frame of a target point cloud, and obtaining motion parameters when the first anchor frame is transformed to the position where the second anchor frame is located; transforming points in the source point cloud according to the motion parameters to obtain a simulated target point cloud; generating a motion vector according to the position of the point in the simulated target point cloud and the position of the point in the target point cloud, and taking the motion vector as a pseudo three-dimensional scene flow label; training based on the three-dimensional scene flow label to obtain a scene flow estimation model</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDyzU9JzVEoKUrMzMvMS1fITS3JyE9RSMxLUcgFyegmJRanpigUJ6fmpSqk5eSXK6QWl2TmJpZk5udBFfMwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigkSQ3pJ4Zz9DQwtTC3NjMwtHY2LUAAAr1jIJ</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>PENG YUNHUI</creator><creator>ZHANG HAO</creator><creator>YU PENGFEI</creator><creator>CHU JIAXIN</creator><creator>ZHANG TIANLEI</creator><creator>FEI WENYUAN</creator><scope>EVB</scope></search><sort><creationdate>20240903</creationdate><title>Model training method and model-based scene flow estimation method</title><author>PENG YUNHUI ; ZHANG HAO ; YU PENGFEI ; CHU JIAXIN ; ZHANG TIANLEI ; FEI WENYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118587368A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PENG YUNHUI</creatorcontrib><creatorcontrib>ZHANG HAO</creatorcontrib><creatorcontrib>YU PENGFEI</creatorcontrib><creatorcontrib>CHU JIAXIN</creatorcontrib><creatorcontrib>ZHANG TIANLEI</creatorcontrib><creatorcontrib>FEI WENYUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PENG YUNHUI</au><au>ZHANG HAO</au><au>YU PENGFEI</au><au>CHU JIAXIN</au><au>ZHANG TIANLEI</au><au>FEI WENYUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model training method and model-based scene flow estimation method</title><date>2024-09-03</date><risdate>2024</risdate><abstract>The invention provides a model training method and a model-based scene flow estimation method. The method comprises the following steps: acquiring a point cloud acquired by a sensor at an Nth frame as a source point cloud, and acquiring a point cloud acquired by the sensor at an actual (N + 1) th frame as a target point cloud; generating a first anchor frame of a source point cloud and a second anchor frame of a target point cloud, and obtaining motion parameters when the first anchor frame is transformed to the position where the second anchor frame is located; transforming points in the source point cloud according to the motion parameters to obtain a simulated target point cloud; generating a motion vector according to the position of the point in the simulated target point cloud and the position of the point in the target point cloud, and taking the motion vector as a pseudo three-dimensional scene flow label; training based on the three-dimensional scene flow label to obtain a scene flow estimation model</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118587368A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Model training method and model-based scene flow estimation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PENG%20YUNHUI&rft.date=2024-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118587368A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true