Dry quenching system circulating fan modeling method based on mechanism and data fusion

The invention relates to a dry quenching system circulating fan modeling method based on mechanism and data fusion, and the method comprises the steps: obtaining and preprocessing data, building a physical information neural network (PINN) model of a circulating fan, building the physical informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHAN YUAN, LIU BEIYAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHAN YUAN
LIU BEIYAN
description The invention relates to a dry quenching system circulating fan modeling method based on mechanism and data fusion, and the method comprises the steps: obtaining and preprocessing data, building a physical information neural network (PINN) model of a circulating fan, building the physical information neural network (PINN) model, embedding an ordinary differential equation set of the circulating fan into a neural network structure, and carrying out the modeling of the circulating fan. Training and optimizing the model: adjusting parameters of the neural network through a back propagation algorithm, minimizing the loss function, and performing model fitting by using historical data in the training process so as to learn dynamic characteristics and physical laws of the circulating fan system, model effect verification and model practical application; according to the method, the circulating fan system is efficiently solved, the optimization problem possibly encountered in the operation process of the circulating
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118586287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118586287A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118586287A3</originalsourceid><addsrcrecordid>eNqNijEOwjAQBN1QIOAPxwMoAgLcogCiokKijA77EluyzyFnF_k9ROIBVKuZ2bl6nocR3oXYOM8dyCiZIhg_mBIwT6pFhpgshQkiZZcsvFDIQvoGMg7ZSwRkCxYzQlvEJ16qWYtBaPXbhVpfL4_6tqE-NSQ9GmLKTX2vKr3Xh60-nnb_fD5ohTn8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dry quenching system circulating fan modeling method based on mechanism and data fusion</title><source>esp@cenet</source><creator>SHAN YUAN ; LIU BEIYAN</creator><creatorcontrib>SHAN YUAN ; LIU BEIYAN</creatorcontrib><description>The invention relates to a dry quenching system circulating fan modeling method based on mechanism and data fusion, and the method comprises the steps: obtaining and preprocessing data, building a physical information neural network (PINN) model of a circulating fan, building the physical information neural network (PINN) model, embedding an ordinary differential equation set of the circulating fan into a neural network structure, and carrying out the modeling of the circulating fan. Training and optimizing the model: adjusting parameters of the neural network through a back propagation algorithm, minimizing the loss function, and performing model fitting by using historical data in the training process so as to learn dynamic characteristics and physical laws of the circulating fan system, model effect verification and model practical application; according to the method, the circulating fan system is efficiently solved, the optimization problem possibly encountered in the operation process of the circulating</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118586287A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=CN&amp;NR=118586287A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHAN YUAN</creatorcontrib><creatorcontrib>LIU BEIYAN</creatorcontrib><title>Dry quenching system circulating fan modeling method based on mechanism and data fusion</title><description>The invention relates to a dry quenching system circulating fan modeling method based on mechanism and data fusion, and the method comprises the steps: obtaining and preprocessing data, building a physical information neural network (PINN) model of a circulating fan, building the physical information neural network (PINN) model, embedding an ordinary differential equation set of the circulating fan into a neural network structure, and carrying out the modeling of the circulating fan. Training and optimizing the model: adjusting parameters of the neural network through a back propagation algorithm, minimizing the loss function, and performing model fitting by using historical data in the training process so as to learn dynamic characteristics and physical laws of the circulating fan system, model effect verification and model practical application; according to the method, the circulating fan system is efficiently solved, the optimization problem possibly encountered in the operation process of the circulating</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEOwjAQBN1QIOAPxwMoAgLcogCiokKijA77EluyzyFnF_k9ROIBVKuZ2bl6nocR3oXYOM8dyCiZIhg_mBIwT6pFhpgshQkiZZcsvFDIQvoGMg7ZSwRkCxYzQlvEJ16qWYtBaPXbhVpfL4_6tqE-NSQ9GmLKTX2vKr3Xh60-nnb_fD5ohTn8</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>SHAN YUAN</creator><creator>LIU BEIYAN</creator><scope>EVB</scope></search><sort><creationdate>20240903</creationdate><title>Dry quenching system circulating fan modeling method based on mechanism and data fusion</title><author>SHAN YUAN ; LIU BEIYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118586287A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHAN YUAN</creatorcontrib><creatorcontrib>LIU BEIYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHAN YUAN</au><au>LIU BEIYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dry quenching system circulating fan modeling method based on mechanism and data fusion</title><date>2024-09-03</date><risdate>2024</risdate><abstract>The invention relates to a dry quenching system circulating fan modeling method based on mechanism and data fusion, and the method comprises the steps: obtaining and preprocessing data, building a physical information neural network (PINN) model of a circulating fan, building the physical information neural network (PINN) model, embedding an ordinary differential equation set of the circulating fan into a neural network structure, and carrying out the modeling of the circulating fan. Training and optimizing the model: adjusting parameters of the neural network through a back propagation algorithm, minimizing the loss function, and performing model fitting by using historical data in the training process so as to learn dynamic characteristics and physical laws of the circulating fan system, model effect verification and model practical application; according to the method, the circulating fan system is efficiently solved, the optimization problem possibly encountered in the operation process of the circulating</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118586287A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Dry quenching system circulating fan modeling method based on mechanism and data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHAN%20YUAN&rft.date=2024-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118586287A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true