AI physical simulation method and system for calculating differential operator on unstructured grid
The invention relates to an AI physical simulation method and system for calculating a differential operator on an unstructured grid, and the method comprises the steps: carrying out the padding of input initial condition data, and constructing a sparse unstructured grid; calculating a differential...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUN HAO YU FAN ZENG BOCHENG ZHANG YI CHENG ZERUIZHI LIU HONGSHENG |
description | The invention relates to an AI physical simulation method and system for calculating a differential operator on an unstructured grid, and the method comprises the steps: carrying out the padding of input initial condition data, and constructing a sparse unstructured grid; calculating a differential operator item on the unstructured grid, embedding the differential operator item in the equation into a network structure, and predicting a system state quantity under the unstructured coarse grid by adopting a message passing graph neural network; and embedding the boundary condition of the equation into the simulation model by adopting a mode of simultaneously padding in the hidden space, so that the simulation model always meets the boundary condition, and AI physical simulation is carried out on the fluid. According to the method, under the condition that sparse training samples are used, the simulation precision of the complex physical field on the non-structural coarse grid is remarkably improved.
本发明涉及一种在非结构 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118586182A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118586182A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118586182A3</originalsourceid><addsrcrecordid>eNqNyz0KAjEQQOE0FqLeYfYAFlGUbZdF0cbKfgnJZDeQPzKTYm9vEA9g9ZrvbYUenpCXlZxWHsiF6hW7FCEgL8mAigZoJcYANhVoSH9FnME4a7FgZNfOlLEobqKtNRKXqrkWNDAXZ_ZiY5UnPPy6E9399h4fR8xpQspKY0SexpeU_aW_yv40nP8xH-ptP0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI physical simulation method and system for calculating differential operator on unstructured grid</title><source>esp@cenet</source><creator>SUN HAO ; YU FAN ; ZENG BOCHENG ; ZHANG YI ; CHENG ZERUIZHI ; LIU HONGSHENG</creator><creatorcontrib>SUN HAO ; YU FAN ; ZENG BOCHENG ; ZHANG YI ; CHENG ZERUIZHI ; LIU HONGSHENG</creatorcontrib><description>The invention relates to an AI physical simulation method and system for calculating a differential operator on an unstructured grid, and the method comprises the steps: carrying out the padding of input initial condition data, and constructing a sparse unstructured grid; calculating a differential operator item on the unstructured grid, embedding the differential operator item in the equation into a network structure, and predicting a system state quantity under the unstructured coarse grid by adopting a message passing graph neural network; and embedding the boundary condition of the equation into the simulation model by adopting a mode of simultaneously padding in the hidden space, so that the simulation model always meets the boundary condition, and AI physical simulation is carried out on the fluid. According to the method, under the condition that sparse training samples are used, the simulation precision of the complex physical field on the non-structural coarse grid is remarkably improved.
本发明涉及一种在非结构</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240903&DB=EPODOC&CC=CN&NR=118586182A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240903&DB=EPODOC&CC=CN&NR=118586182A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN HAO</creatorcontrib><creatorcontrib>YU FAN</creatorcontrib><creatorcontrib>ZENG BOCHENG</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>CHENG ZERUIZHI</creatorcontrib><creatorcontrib>LIU HONGSHENG</creatorcontrib><title>AI physical simulation method and system for calculating differential operator on unstructured grid</title><description>The invention relates to an AI physical simulation method and system for calculating a differential operator on an unstructured grid, and the method comprises the steps: carrying out the padding of input initial condition data, and constructing a sparse unstructured grid; calculating a differential operator item on the unstructured grid, embedding the differential operator item in the equation into a network structure, and predicting a system state quantity under the unstructured coarse grid by adopting a message passing graph neural network; and embedding the boundary condition of the equation into the simulation model by adopting a mode of simultaneously padding in the hidden space, so that the simulation model always meets the boundary condition, and AI physical simulation is carried out on the fluid. According to the method, under the condition that sparse training samples are used, the simulation precision of the complex physical field on the non-structural coarse grid is remarkably improved.
本发明涉及一种在非结构</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyz0KAjEQQOE0FqLeYfYAFlGUbZdF0cbKfgnJZDeQPzKTYm9vEA9g9ZrvbYUenpCXlZxWHsiF6hW7FCEgL8mAigZoJcYANhVoSH9FnME4a7FgZNfOlLEobqKtNRKXqrkWNDAXZ_ZiY5UnPPy6E9399h4fR8xpQspKY0SexpeU_aW_yv40nP8xH-ptP0E</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>SUN HAO</creator><creator>YU FAN</creator><creator>ZENG BOCHENG</creator><creator>ZHANG YI</creator><creator>CHENG ZERUIZHI</creator><creator>LIU HONGSHENG</creator><scope>EVB</scope></search><sort><creationdate>20240903</creationdate><title>AI physical simulation method and system for calculating differential operator on unstructured grid</title><author>SUN HAO ; YU FAN ; ZENG BOCHENG ; ZHANG YI ; CHENG ZERUIZHI ; LIU HONGSHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118586182A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN HAO</creatorcontrib><creatorcontrib>YU FAN</creatorcontrib><creatorcontrib>ZENG BOCHENG</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>CHENG ZERUIZHI</creatorcontrib><creatorcontrib>LIU HONGSHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN HAO</au><au>YU FAN</au><au>ZENG BOCHENG</au><au>ZHANG YI</au><au>CHENG ZERUIZHI</au><au>LIU HONGSHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI physical simulation method and system for calculating differential operator on unstructured grid</title><date>2024-09-03</date><risdate>2024</risdate><abstract>The invention relates to an AI physical simulation method and system for calculating a differential operator on an unstructured grid, and the method comprises the steps: carrying out the padding of input initial condition data, and constructing a sparse unstructured grid; calculating a differential operator item on the unstructured grid, embedding the differential operator item in the equation into a network structure, and predicting a system state quantity under the unstructured coarse grid by adopting a message passing graph neural network; and embedding the boundary condition of the equation into the simulation model by adopting a mode of simultaneously padding in the hidden space, so that the simulation model always meets the boundary condition, and AI physical simulation is carried out on the fluid. According to the method, under the condition that sparse training samples are used, the simulation precision of the complex physical field on the non-structural coarse grid is remarkably improved.
本发明涉及一种在非结构</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118586182A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | AI physical simulation method and system for calculating differential operator on unstructured grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20HAO&rft.date=2024-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118586182A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |