Unmanned aerial vehicle power transmission line defect image detection method

The invention discloses an unmanned aerial vehicle power transmission line defect image detection method, relates to the technical field of power transmission defect identification, and realizes transplantation of a power transmission line defect identification neural network model to an unmanned ae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU WEIJUN, WU NENGCHENG, CHENG XUMENG, SU ZEWANG, HUANG TIAOXIN, CHEN GUANXIAN, CHEN XI, LIU XUANYOU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU WEIJUN
WU NENGCHENG
CHENG XUMENG
SU ZEWANG
HUANG TIAOXIN
CHEN GUANXIAN
CHEN XI
LIU XUANYOU
description The invention discloses an unmanned aerial vehicle power transmission line defect image detection method, relates to the technical field of power transmission defect identification, and realizes transplantation of a power transmission line defect identification neural network model to an unmanned aerial vehicle edge end through cross-architecture migration of the power transmission line defect identification neural network model. An unmanned aerial vehicle mobile edge end is enabled for an intelligent inspection algorithm, online identification of power transmission line defects is supported, and power transmission line defect identification neural network pruning is performed on a power transmission line defect identification neural network model, so that a relatively high model compression ratio is realized, the precision loss of the pruned model is small, and the accuracy of the power transmission line defect identification neural network model is improved. And parameter quantification is carried out on th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118570673A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118570673A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118570673A3</originalsourceid><addsrcrecordid>eNqNisEKwjAQBXvxIOo_rB8gWIrWqxTFi570XJbk1S4km5AE_X0t-AGehmFmXl0f6lkVlhhJ2NELoxgHiuGNRCWxZi85S1ByoiCLAaaQeH5OUr4yNY8yBrusZgO7jNWPi2p9Pt27ywYx9MiRDRSl7251fdi1233bHJt_ng8HWzaR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle power transmission line defect image detection method</title><source>esp@cenet</source><creator>HU WEIJUN ; WU NENGCHENG ; CHENG XUMENG ; SU ZEWANG ; HUANG TIAOXIN ; CHEN GUANXIAN ; CHEN XI ; LIU XUANYOU</creator><creatorcontrib>HU WEIJUN ; WU NENGCHENG ; CHENG XUMENG ; SU ZEWANG ; HUANG TIAOXIN ; CHEN GUANXIAN ; CHEN XI ; LIU XUANYOU</creatorcontrib><description>The invention discloses an unmanned aerial vehicle power transmission line defect image detection method, relates to the technical field of power transmission defect identification, and realizes transplantation of a power transmission line defect identification neural network model to an unmanned aerial vehicle edge end through cross-architecture migration of the power transmission line defect identification neural network model. An unmanned aerial vehicle mobile edge end is enabled for an intelligent inspection algorithm, online identification of power transmission line defects is supported, and power transmission line defect identification neural network pruning is performed on a power transmission line defect identification neural network model, so that a relatively high model compression ratio is realized, the precision loss of the pruned model is small, and the accuracy of the power transmission line defect identification neural network model is improved. And parameter quantification is carried out on th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118570673A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118570673A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU WEIJUN</creatorcontrib><creatorcontrib>WU NENGCHENG</creatorcontrib><creatorcontrib>CHENG XUMENG</creatorcontrib><creatorcontrib>SU ZEWANG</creatorcontrib><creatorcontrib>HUANG TIAOXIN</creatorcontrib><creatorcontrib>CHEN GUANXIAN</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>LIU XUANYOU</creatorcontrib><title>Unmanned aerial vehicle power transmission line defect image detection method</title><description>The invention discloses an unmanned aerial vehicle power transmission line defect image detection method, relates to the technical field of power transmission defect identification, and realizes transplantation of a power transmission line defect identification neural network model to an unmanned aerial vehicle edge end through cross-architecture migration of the power transmission line defect identification neural network model. An unmanned aerial vehicle mobile edge end is enabled for an intelligent inspection algorithm, online identification of power transmission line defects is supported, and power transmission line defect identification neural network pruning is performed on a power transmission line defect identification neural network model, so that a relatively high model compression ratio is realized, the precision loss of the pruned model is small, and the accuracy of the power transmission line defect identification neural network model is improved. And parameter quantification is carried out on th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKwjAQBXvxIOo_rB8gWIrWqxTFi570XJbk1S4km5AE_X0t-AGehmFmXl0f6lkVlhhJ2NELoxgHiuGNRCWxZi85S1ByoiCLAaaQeH5OUr4yNY8yBrusZgO7jNWPi2p9Pt27ywYx9MiRDRSl7251fdi1233bHJt_ng8HWzaR</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>HU WEIJUN</creator><creator>WU NENGCHENG</creator><creator>CHENG XUMENG</creator><creator>SU ZEWANG</creator><creator>HUANG TIAOXIN</creator><creator>CHEN GUANXIAN</creator><creator>CHEN XI</creator><creator>LIU XUANYOU</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>Unmanned aerial vehicle power transmission line defect image detection method</title><author>HU WEIJUN ; WU NENGCHENG ; CHENG XUMENG ; SU ZEWANG ; HUANG TIAOXIN ; CHEN GUANXIAN ; CHEN XI ; LIU XUANYOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118570673A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU WEIJUN</creatorcontrib><creatorcontrib>WU NENGCHENG</creatorcontrib><creatorcontrib>CHENG XUMENG</creatorcontrib><creatorcontrib>SU ZEWANG</creatorcontrib><creatorcontrib>HUANG TIAOXIN</creatorcontrib><creatorcontrib>CHEN GUANXIAN</creatorcontrib><creatorcontrib>CHEN XI</creatorcontrib><creatorcontrib>LIU XUANYOU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU WEIJUN</au><au>WU NENGCHENG</au><au>CHENG XUMENG</au><au>SU ZEWANG</au><au>HUANG TIAOXIN</au><au>CHEN GUANXIAN</au><au>CHEN XI</au><au>LIU XUANYOU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle power transmission line defect image detection method</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention discloses an unmanned aerial vehicle power transmission line defect image detection method, relates to the technical field of power transmission defect identification, and realizes transplantation of a power transmission line defect identification neural network model to an unmanned aerial vehicle edge end through cross-architecture migration of the power transmission line defect identification neural network model. An unmanned aerial vehicle mobile edge end is enabled for an intelligent inspection algorithm, online identification of power transmission line defects is supported, and power transmission line defect identification neural network pruning is performed on a power transmission line defect identification neural network model, so that a relatively high model compression ratio is realized, the precision loss of the pruned model is small, and the accuracy of the power transmission line defect identification neural network model is improved. And parameter quantification is carried out on th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118570673A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Unmanned aerial vehicle power transmission line defect image detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20WEIJUN&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118570673A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true