Point cloud registration method for linear spatial diffusion
The invention discloses a point cloud registration method for linear spatial diffusion. The method comprises the following steps: acquiring a source point cloud and a target point cloud to be registered; performing global feature extraction on the source point cloud and the target point cloud to obt...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIAO QIGUANG WU YUE YUAN YONGZHE GAO ZHIGANG LI HAO GONG MAOGUO ZHANG MINGYANG MA WENPING |
description | The invention discloses a point cloud registration method for linear spatial diffusion. The method comprises the following steps: acquiring a source point cloud and a target point cloud to be registered; performing global feature extraction on the source point cloud and the target point cloud to obtain a source point cloud global feature and a target point cloud global feature; reasoning prior rigid transformation by using a diffusion model; the diffusion model is obtained by training based on a plurality of noise rigid transformations and corresponding real rigid transformations, the real rigid transformations are rigid transformations between registered sample source point clouds and sample target point clouds, and the noise rigid transformations are rigid transformations correspondingly obtained by performing forward diffusion noise addition on the real rigid transformations; and predicting a point cloud registration result of the source point cloud and the target point cloud according to the source point |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118570266A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118570266A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118570266A3</originalsourceid><addsrcrecordid>eNrjZLAJyM_MK1FIzskvTVEoSk3PLC4pSizJzM9TyE0tychPUUjLL1LIycxLTSxSKC4AyiTmKKRkpqWVFgPV8DCwpiXmFKfyQmluBkU31xBnD93Ugvz4VKDy5NS81JJ4Zz9DQwtTcwMjMzNHY2LUAAAYYzA_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Point cloud registration method for linear spatial diffusion</title><source>esp@cenet</source><creator>MIAO QIGUANG ; WU YUE ; YUAN YONGZHE ; GAO ZHIGANG ; LI HAO ; GONG MAOGUO ; ZHANG MINGYANG ; MA WENPING</creator><creatorcontrib>MIAO QIGUANG ; WU YUE ; YUAN YONGZHE ; GAO ZHIGANG ; LI HAO ; GONG MAOGUO ; ZHANG MINGYANG ; MA WENPING</creatorcontrib><description>The invention discloses a point cloud registration method for linear spatial diffusion. The method comprises the following steps: acquiring a source point cloud and a target point cloud to be registered; performing global feature extraction on the source point cloud and the target point cloud to obtain a source point cloud global feature and a target point cloud global feature; reasoning prior rigid transformation by using a diffusion model; the diffusion model is obtained by training based on a plurality of noise rigid transformations and corresponding real rigid transformations, the real rigid transformations are rigid transformations between registered sample source point clouds and sample target point clouds, and the noise rigid transformations are rigid transformations correspondingly obtained by performing forward diffusion noise addition on the real rigid transformations; and predicting a point cloud registration result of the source point cloud and the target point cloud according to the source point</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240830&DB=EPODOC&CC=CN&NR=118570266A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240830&DB=EPODOC&CC=CN&NR=118570266A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIAO QIGUANG</creatorcontrib><creatorcontrib>WU YUE</creatorcontrib><creatorcontrib>YUAN YONGZHE</creatorcontrib><creatorcontrib>GAO ZHIGANG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>GONG MAOGUO</creatorcontrib><creatorcontrib>ZHANG MINGYANG</creatorcontrib><creatorcontrib>MA WENPING</creatorcontrib><title>Point cloud registration method for linear spatial diffusion</title><description>The invention discloses a point cloud registration method for linear spatial diffusion. The method comprises the following steps: acquiring a source point cloud and a target point cloud to be registered; performing global feature extraction on the source point cloud and the target point cloud to obtain a source point cloud global feature and a target point cloud global feature; reasoning prior rigid transformation by using a diffusion model; the diffusion model is obtained by training based on a plurality of noise rigid transformations and corresponding real rigid transformations, the real rigid transformations are rigid transformations between registered sample source point clouds and sample target point clouds, and the noise rigid transformations are rigid transformations correspondingly obtained by performing forward diffusion noise addition on the real rigid transformations; and predicting a point cloud registration result of the source point cloud and the target point cloud according to the source point</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAJyM_MK1FIzskvTVEoSk3PLC4pSizJzM9TyE0tychPUUjLL1LIycxLTSxSKC4AyiTmKKRkpqWVFgPV8DCwpiXmFKfyQmluBkU31xBnD93Ugvz4VKDy5NS81JJ4Zz9DQwtTcwMjMzNHY2LUAAAYYzA_</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>MIAO QIGUANG</creator><creator>WU YUE</creator><creator>YUAN YONGZHE</creator><creator>GAO ZHIGANG</creator><creator>LI HAO</creator><creator>GONG MAOGUO</creator><creator>ZHANG MINGYANG</creator><creator>MA WENPING</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>Point cloud registration method for linear spatial diffusion</title><author>MIAO QIGUANG ; WU YUE ; YUAN YONGZHE ; GAO ZHIGANG ; LI HAO ; GONG MAOGUO ; ZHANG MINGYANG ; MA WENPING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118570266A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MIAO QIGUANG</creatorcontrib><creatorcontrib>WU YUE</creatorcontrib><creatorcontrib>YUAN YONGZHE</creatorcontrib><creatorcontrib>GAO ZHIGANG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>GONG MAOGUO</creatorcontrib><creatorcontrib>ZHANG MINGYANG</creatorcontrib><creatorcontrib>MA WENPING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIAO QIGUANG</au><au>WU YUE</au><au>YUAN YONGZHE</au><au>GAO ZHIGANG</au><au>LI HAO</au><au>GONG MAOGUO</au><au>ZHANG MINGYANG</au><au>MA WENPING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Point cloud registration method for linear spatial diffusion</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention discloses a point cloud registration method for linear spatial diffusion. The method comprises the following steps: acquiring a source point cloud and a target point cloud to be registered; performing global feature extraction on the source point cloud and the target point cloud to obtain a source point cloud global feature and a target point cloud global feature; reasoning prior rigid transformation by using a diffusion model; the diffusion model is obtained by training based on a plurality of noise rigid transformations and corresponding real rigid transformations, the real rigid transformations are rigid transformations between registered sample source point clouds and sample target point clouds, and the noise rigid transformations are rigid transformations correspondingly obtained by performing forward diffusion noise addition on the real rigid transformations; and predicting a point cloud registration result of the source point cloud and the target point cloud according to the source point</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118570266A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Point cloud registration method for linear spatial diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIAO%20QIGUANG&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118570266A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |