MOOC comprehensive feature fusion-based learning prediction method and device

The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YAO KE, LIU MEILIN, ZHANG JIAHUAN, WANG GANG, CUI QIN, ZHU WENLEI, YANG KUN, WANG TAORAN, LI XIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YAO KE
LIU MEILIN
ZHANG JIAHUAN
WANG GANG
CUI QIN
ZHU WENLEI
YANG KUN
WANG TAORAN
LI XIANG
description The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118569451A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118569451A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118569451A3</originalsourceid><addsrcrecordid>eNqNyrEOwiAURmEWB6O-w_UBOhCt0dEQjUvt4t4g_LUk7YUA7fPL4AM4fcM5a9E0bavI-ClEDODkFlAPnedYnJPzXL11gqUROrLjD5XROpNLoQl58JY0W7JYnMFWrHo9Jux-bsT-fnupR4XgO6SgDRi5U08pz_Xpcqzl9fDP8wXWLjY7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><source>esp@cenet</source><creator>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</creator><creatorcontrib>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</creatorcontrib><description>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118569451A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118569451A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAO KE</creatorcontrib><creatorcontrib>LIU MEILIN</creatorcontrib><creatorcontrib>ZHANG JIAHUAN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CUI QIN</creatorcontrib><creatorcontrib>ZHU WENLEI</creatorcontrib><creatorcontrib>YANG KUN</creatorcontrib><creatorcontrib>WANG TAORAN</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><description>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEOwiAURmEWB6O-w_UBOhCt0dEQjUvt4t4g_LUk7YUA7fPL4AM4fcM5a9E0bavI-ClEDODkFlAPnedYnJPzXL11gqUROrLjD5XROpNLoQl58JY0W7JYnMFWrHo9Jux-bsT-fnupR4XgO6SgDRi5U08pz_Xpcqzl9fDP8wXWLjY7</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>YAO KE</creator><creator>LIU MEILIN</creator><creator>ZHANG JIAHUAN</creator><creator>WANG GANG</creator><creator>CUI QIN</creator><creator>ZHU WENLEI</creator><creator>YANG KUN</creator><creator>WANG TAORAN</creator><creator>LI XIANG</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><author>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118569451A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YAO KE</creatorcontrib><creatorcontrib>LIU MEILIN</creatorcontrib><creatorcontrib>ZHANG JIAHUAN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CUI QIN</creatorcontrib><creatorcontrib>ZHU WENLEI</creatorcontrib><creatorcontrib>YANG KUN</creatorcontrib><creatorcontrib>WANG TAORAN</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAO KE</au><au>LIU MEILIN</au><au>ZHANG JIAHUAN</au><au>WANG GANG</au><au>CUI QIN</au><au>ZHU WENLEI</au><au>YANG KUN</au><au>WANG TAORAN</au><au>LI XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118569451A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title MOOC comprehensive feature fusion-based learning prediction method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAO%20KE&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118569451A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true