MOOC comprehensive feature fusion-based learning prediction method and device
The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure da...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YAO KE LIU MEILIN ZHANG JIAHUAN WANG GANG CUI QIN ZHU WENLEI YANG KUN WANG TAORAN LI XIANG |
description | The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118569451A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118569451A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118569451A3</originalsourceid><addsrcrecordid>eNqNyrEOwiAURmEWB6O-w_UBOhCt0dEQjUvt4t4g_LUk7YUA7fPL4AM4fcM5a9E0bavI-ClEDODkFlAPnedYnJPzXL11gqUROrLjD5XROpNLoQl58JY0W7JYnMFWrHo9Jux-bsT-fnupR4XgO6SgDRi5U08pz_Xpcqzl9fDP8wXWLjY7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><source>esp@cenet</source><creator>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</creator><creatorcontrib>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</creatorcontrib><description>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240830&DB=EPODOC&CC=CN&NR=118569451A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240830&DB=EPODOC&CC=CN&NR=118569451A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAO KE</creatorcontrib><creatorcontrib>LIU MEILIN</creatorcontrib><creatorcontrib>ZHANG JIAHUAN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CUI QIN</creatorcontrib><creatorcontrib>ZHU WENLEI</creatorcontrib><creatorcontrib>YANG KUN</creatorcontrib><creatorcontrib>WANG TAORAN</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><description>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEOwiAURmEWB6O-w_UBOhCt0dEQjUvt4t4g_LUk7YUA7fPL4AM4fcM5a9E0bavI-ClEDODkFlAPnedYnJPzXL11gqUROrLjD5XROpNLoQl58JY0W7JYnMFWrHo9Jux-bsT-fnupR4XgO6SgDRi5U08pz_Xpcqzl9fDP8wXWLjY7</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>YAO KE</creator><creator>LIU MEILIN</creator><creator>ZHANG JIAHUAN</creator><creator>WANG GANG</creator><creator>CUI QIN</creator><creator>ZHU WENLEI</creator><creator>YANG KUN</creator><creator>WANG TAORAN</creator><creator>LI XIANG</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><author>YAO KE ; LIU MEILIN ; ZHANG JIAHUAN ; WANG GANG ; CUI QIN ; ZHU WENLEI ; YANG KUN ; WANG TAORAN ; LI XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118569451A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YAO KE</creatorcontrib><creatorcontrib>LIU MEILIN</creatorcontrib><creatorcontrib>ZHANG JIAHUAN</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>CUI QIN</creatorcontrib><creatorcontrib>ZHU WENLEI</creatorcontrib><creatorcontrib>YANG KUN</creatorcontrib><creatorcontrib>WANG TAORAN</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAO KE</au><au>LIU MEILIN</au><au>ZHANG JIAHUAN</au><au>WANG GANG</au><au>CUI QIN</au><au>ZHU WENLEI</au><au>YANG KUN</au><au>WANG TAORAN</au><au>LI XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MOOC comprehensive feature fusion-based learning prediction method and device</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention discloses a learning prediction method and device based on MOOC comprehensive feature fusion, and relates to the technical field of data prediction identification, and the method comprises the steps: obtaining a learning behavior log, basic attribute information and course structure data; respectively extracting sequence features from the learning behavior information sequence, the learner attribute information sequence and the course information sequence, and converting each sequence feature into a feature vector with a unified dimension; mutual information among different feature vectors is calculated, and the mutual information and original features are fused into a comprehensive feature vector; internal relation weights among the comprehensive feature vectors are analyzed, weighted summation is carried out on each comprehensive feature vector according to the weights, and a fusion feature vector is obtained; and carrying out learning risk dichotomy prediction on the fusion feature vector, an</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118569451A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | MOOC comprehensive feature fusion-based learning prediction method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAO%20KE&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118569451A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |