Fuel cell health state estimation method and system based on compensation GPR model

The invention belongs to the technical field of fuel cell health state estimation, and particularly relates to a fuel cell health state estimation method and system based on a compensation GPR model, and the method comprises the steps: obtaining feature parameters of a fuel cell under a discharge co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LI, TAN CHANGPENG, WU JI, WU MUYAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LI
TAN CHANGPENG
WU JI
WU MUYAO
description The invention belongs to the technical field of fuel cell health state estimation, and particularly relates to a fuel cell health state estimation method and system based on a compensation GPR model, and the method comprises the steps: obtaining feature parameters of a fuel cell under a discharge condition, and employing a self-sparse self-encoder to extract target features in the feature parameters; taking the target feature as the input of a pre-constructed Gaussian process regression (GPR) model, taking the battery SOH as the output of the GPR model, performing hyper-parameter optimization on the GPR model by adopting a Kepler planetary optimization algorithm, and outputting an SOH first predicted value by the GPR model after optimization; setting a compensation function to carry out compensation optimization on the SOH first predicted value to obtain an SOH second predicted value; and selecting an average absolute percentage error, a mean square error and a maximum error as evaluation indexes to evaluate
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118566741A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118566741A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118566741A3</originalsourceid><addsrcrecordid>eNqNyr0OAUEUhuFpFIJ7OC5AMcHSysZSiaDfHDOfzCbzl5yjcPckXIDqLd5nbK7dE5EcYqQAjhpIlBUE0SGxDiVTgobiibMneYki0Z0Fnj7LlVSR5esO5wul4hGnZvTgKJj9OjHzbn9rjwvU0kMqO2Ro356s3a6bZrOyu-U_5g0j-jgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fuel cell health state estimation method and system based on compensation GPR model</title><source>esp@cenet</source><creator>WANG LI ; TAN CHANGPENG ; WU JI ; WU MUYAO</creator><creatorcontrib>WANG LI ; TAN CHANGPENG ; WU JI ; WU MUYAO</creatorcontrib><description>The invention belongs to the technical field of fuel cell health state estimation, and particularly relates to a fuel cell health state estimation method and system based on a compensation GPR model, and the method comprises the steps: obtaining feature parameters of a fuel cell under a discharge condition, and employing a self-sparse self-encoder to extract target features in the feature parameters; taking the target feature as the input of a pre-constructed Gaussian process regression (GPR) model, taking the battery SOH as the output of the GPR model, performing hyper-parameter optimization on the GPR model by adopting a Kepler planetary optimization algorithm, and outputting an SOH first predicted value by the GPR model after optimization; setting a compensation function to carry out compensation optimization on the SOH first predicted value to obtain an SOH second predicted value; and selecting an average absolute percentage error, a mean square error and a maximum error as evaluation indexes to evaluate</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118566741A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118566741A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LI</creatorcontrib><creatorcontrib>TAN CHANGPENG</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>WU MUYAO</creatorcontrib><title>Fuel cell health state estimation method and system based on compensation GPR model</title><description>The invention belongs to the technical field of fuel cell health state estimation, and particularly relates to a fuel cell health state estimation method and system based on a compensation GPR model, and the method comprises the steps: obtaining feature parameters of a fuel cell under a discharge condition, and employing a self-sparse self-encoder to extract target features in the feature parameters; taking the target feature as the input of a pre-constructed Gaussian process regression (GPR) model, taking the battery SOH as the output of the GPR model, performing hyper-parameter optimization on the GPR model by adopting a Kepler planetary optimization algorithm, and outputting an SOH first predicted value by the GPR model after optimization; setting a compensation function to carry out compensation optimization on the SOH first predicted value to obtain an SOH second predicted value; and selecting an average absolute percentage error, a mean square error and a maximum error as evaluation indexes to evaluate</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0OAUEUhuFpFIJ7OC5AMcHSysZSiaDfHDOfzCbzl5yjcPckXIDqLd5nbK7dE5EcYqQAjhpIlBUE0SGxDiVTgobiibMneYki0Z0Fnj7LlVSR5esO5wul4hGnZvTgKJj9OjHzbn9rjwvU0kMqO2Ro356s3a6bZrOyu-U_5g0j-jgH</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>WANG LI</creator><creator>TAN CHANGPENG</creator><creator>WU JI</creator><creator>WU MUYAO</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>Fuel cell health state estimation method and system based on compensation GPR model</title><author>WANG LI ; TAN CHANGPENG ; WU JI ; WU MUYAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118566741A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LI</creatorcontrib><creatorcontrib>TAN CHANGPENG</creatorcontrib><creatorcontrib>WU JI</creatorcontrib><creatorcontrib>WU MUYAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LI</au><au>TAN CHANGPENG</au><au>WU JI</au><au>WU MUYAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fuel cell health state estimation method and system based on compensation GPR model</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of fuel cell health state estimation, and particularly relates to a fuel cell health state estimation method and system based on a compensation GPR model, and the method comprises the steps: obtaining feature parameters of a fuel cell under a discharge condition, and employing a self-sparse self-encoder to extract target features in the feature parameters; taking the target feature as the input of a pre-constructed Gaussian process regression (GPR) model, taking the battery SOH as the output of the GPR model, performing hyper-parameter optimization on the GPR model by adopting a Kepler planetary optimization algorithm, and outputting an SOH first predicted value by the GPR model after optimization; setting a compensation function to carry out compensation optimization on the SOH first predicted value to obtain an SOH second predicted value; and selecting an average absolute percentage error, a mean square error and a maximum error as evaluation indexes to evaluate</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118566741A
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Fuel cell health state estimation method and system based on compensation GPR model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LI&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118566741A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true