Unmanned aerial vehicle navigation and path planning method based on deep learning

The invention relates to the technical field of unmanned aerial vehicle navigation and path planning, and discloses an unmanned aerial vehicle navigation and path planning method based on deep learning, and the method comprises the following steps: S1, introducing a virtual obstacle in an unmanned a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MO QIONGYU, HUANG ZAN, XIAO SHUIQING, TAN DAWANG, ZHANG LEYI, XIA XIAOQUN, SHI XUDONG, GONG MANFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MO QIONGYU
HUANG ZAN
XIAO SHUIQING
TAN DAWANG
ZHANG LEYI
XIA XIAOQUN
SHI XUDONG
GONG MANFENG
description The invention relates to the technical field of unmanned aerial vehicle navigation and path planning, and discloses an unmanned aerial vehicle navigation and path planning method based on deep learning, and the method comprises the following steps: S1, introducing a virtual obstacle in an unmanned aerial vehicle flight environment, and considering the dynamics, diversity and complexity of the obstacle; s2, generating an enhanced data set according to the virtual obstacle, and considering the diversity, balance and robustness of the data set; and S3, collecting sensor data of the flight environment of the unmanned aerial vehicle, including image data, laser radar data, inertial measurement unit data and global positioning system data, and considering fusion of multi-source data. By introducing the virtual obstacle and considering the dynamic nature, diversity and complexity of the virtual obstacle, a real flight environment can be simulated more accurately, and the robustness and safety of path planning are im
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118565476A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118565476A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118565476A3</originalsourceid><addsrcrecordid>eNqNy7EOgjAUheEuDgZ9h-sDMBAFXQ3RODkYncmVHmiTctvQhue3Jj6A0xn-76zV4yUTi0ATY7bsaIGxvQMJL3bkZL0Qi6bAyVBwmVoZaUIyXtObYz5moYFADjx_60atBnYR298Wane9PNtbieA7xMA9BKlr71V1qpv6cGzO-3_MBwGGN-U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle navigation and path planning method based on deep learning</title><source>esp@cenet</source><creator>MO QIONGYU ; HUANG ZAN ; XIAO SHUIQING ; TAN DAWANG ; ZHANG LEYI ; XIA XIAOQUN ; SHI XUDONG ; GONG MANFENG</creator><creatorcontrib>MO QIONGYU ; HUANG ZAN ; XIAO SHUIQING ; TAN DAWANG ; ZHANG LEYI ; XIA XIAOQUN ; SHI XUDONG ; GONG MANFENG</creatorcontrib><description>The invention relates to the technical field of unmanned aerial vehicle navigation and path planning, and discloses an unmanned aerial vehicle navigation and path planning method based on deep learning, and the method comprises the following steps: S1, introducing a virtual obstacle in an unmanned aerial vehicle flight environment, and considering the dynamics, diversity and complexity of the obstacle; s2, generating an enhanced data set according to the virtual obstacle, and considering the diversity, balance and robustness of the data set; and S3, collecting sensor data of the flight environment of the unmanned aerial vehicle, including image data, laser radar data, inertial measurement unit data and global positioning system data, and considering fusion of multi-source data. By introducing the virtual obstacle and considering the dynamic nature, diversity and complexity of the virtual obstacle, a real flight environment can be simulated more accurately, and the robustness and safety of path planning are im</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; ELECTRIC DIGITAL DATA PROCESSING ; GYROSCOPIC INSTRUMENTS ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; SURVEYING ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118565476A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240830&amp;DB=EPODOC&amp;CC=CN&amp;NR=118565476A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MO QIONGYU</creatorcontrib><creatorcontrib>HUANG ZAN</creatorcontrib><creatorcontrib>XIAO SHUIQING</creatorcontrib><creatorcontrib>TAN DAWANG</creatorcontrib><creatorcontrib>ZHANG LEYI</creatorcontrib><creatorcontrib>XIA XIAOQUN</creatorcontrib><creatorcontrib>SHI XUDONG</creatorcontrib><creatorcontrib>GONG MANFENG</creatorcontrib><title>Unmanned aerial vehicle navigation and path planning method based on deep learning</title><description>The invention relates to the technical field of unmanned aerial vehicle navigation and path planning, and discloses an unmanned aerial vehicle navigation and path planning method based on deep learning, and the method comprises the following steps: S1, introducing a virtual obstacle in an unmanned aerial vehicle flight environment, and considering the dynamics, diversity and complexity of the obstacle; s2, generating an enhanced data set according to the virtual obstacle, and considering the diversity, balance and robustness of the data set; and S3, collecting sensor data of the flight environment of the unmanned aerial vehicle, including image data, laser radar data, inertial measurement unit data and global positioning system data, and considering fusion of multi-source data. By introducing the virtual obstacle and considering the dynamic nature, diversity and complexity of the virtual obstacle, a real flight environment can be simulated more accurately, and the robustness and safety of path planning are im</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EOgjAUheEuDgZ9h-sDMBAFXQ3RODkYncmVHmiTctvQhue3Jj6A0xn-76zV4yUTi0ATY7bsaIGxvQMJL3bkZL0Qi6bAyVBwmVoZaUIyXtObYz5moYFADjx_60atBnYR298Wane9PNtbieA7xMA9BKlr71V1qpv6cGzO-3_MBwGGN-U</recordid><startdate>20240830</startdate><enddate>20240830</enddate><creator>MO QIONGYU</creator><creator>HUANG ZAN</creator><creator>XIAO SHUIQING</creator><creator>TAN DAWANG</creator><creator>ZHANG LEYI</creator><creator>XIA XIAOQUN</creator><creator>SHI XUDONG</creator><creator>GONG MANFENG</creator><scope>EVB</scope></search><sort><creationdate>20240830</creationdate><title>Unmanned aerial vehicle navigation and path planning method based on deep learning</title><author>MO QIONGYU ; HUANG ZAN ; XIAO SHUIQING ; TAN DAWANG ; ZHANG LEYI ; XIA XIAOQUN ; SHI XUDONG ; GONG MANFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118565476A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>MO QIONGYU</creatorcontrib><creatorcontrib>HUANG ZAN</creatorcontrib><creatorcontrib>XIAO SHUIQING</creatorcontrib><creatorcontrib>TAN DAWANG</creatorcontrib><creatorcontrib>ZHANG LEYI</creatorcontrib><creatorcontrib>XIA XIAOQUN</creatorcontrib><creatorcontrib>SHI XUDONG</creatorcontrib><creatorcontrib>GONG MANFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MO QIONGYU</au><au>HUANG ZAN</au><au>XIAO SHUIQING</au><au>TAN DAWANG</au><au>ZHANG LEYI</au><au>XIA XIAOQUN</au><au>SHI XUDONG</au><au>GONG MANFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle navigation and path planning method based on deep learning</title><date>2024-08-30</date><risdate>2024</risdate><abstract>The invention relates to the technical field of unmanned aerial vehicle navigation and path planning, and discloses an unmanned aerial vehicle navigation and path planning method based on deep learning, and the method comprises the following steps: S1, introducing a virtual obstacle in an unmanned aerial vehicle flight environment, and considering the dynamics, diversity and complexity of the obstacle; s2, generating an enhanced data set according to the virtual obstacle, and considering the diversity, balance and robustness of the data set; and S3, collecting sensor data of the flight environment of the unmanned aerial vehicle, including image data, laser radar data, inertial measurement unit data and global positioning system data, and considering fusion of multi-source data. By introducing the virtual obstacle and considering the dynamic nature, diversity and complexity of the virtual obstacle, a real flight environment can be simulated more accurately, and the robustness and safety of path planning are im</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118565476A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
ELECTRIC DIGITAL DATA PROCESSING
GYROSCOPIC INSTRUMENTS
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
SURVEYING
TESTING
title Unmanned aerial vehicle navigation and path planning method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MO%20QIONGYU&rft.date=2024-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118565476A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true