Collaborative graph convolution and learning style-based course recommendation method

The invention discloses a course recommendation method based on a graph convolutional network and a learning style, and the method comprises the following steps: 1, predicting a score, coding course embedded information connected with a learner into first-order embedded information of the learner, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG GUODAO, GE YISU, WANG CHAOCHAO, LU YANJIE, ZHANG HAQI, GAO XIAOYUN, YE HAIYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG GUODAO
GE YISU
WANG CHAOCHAO
LU YANJIE
ZHANG HAQI
GAO XIAOYUN
YE HAIYANG
description The invention discloses a course recommendation method based on a graph convolutional network and a learning style, and the method comprises the following steps: 1, predicting a score, coding course embedded information connected with a learner into first-order embedded information of the learner, and obtaining high-order embedded information through the first-order embedded information; aggregating each order of embedded information in the high-order embedded information into a single vector through an aggregation function to obtain an aggregation embedded representation; performing inner product operation on the aggregation embedded representation of the learner and the course to obtain a predicted score of the learner on the course; 2, respectively defining a learner summary and a course summary, calculating a learning style vector, and obtaining a course learning style similarity score according to the learner learning style vector and the course learning style vector; and step 3, optimizing the predictio
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118551115A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118551115A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118551115A3</originalsourceid><addsrcrecordid>eNqNyjEKwjAUBuAuDqLeIR6gQ5CCqwTFyUnn8pr8toHkvZCkBW-viAdw-pZv3TyMhECDZKp-gRozpUlZ4UXCXL2wInYqgDJ7HlWpr4B2oAL3SXMuUBlWYgQ7-vaIOonbNqsnhYLdz02zv5zv5toiSY-SyIJRe3PT-th1WuvudPjnvAFUUzoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Collaborative graph convolution and learning style-based course recommendation method</title><source>esp@cenet</source><creator>ZHANG GUODAO ; GE YISU ; WANG CHAOCHAO ; LU YANJIE ; ZHANG HAQI ; GAO XIAOYUN ; YE HAIYANG</creator><creatorcontrib>ZHANG GUODAO ; GE YISU ; WANG CHAOCHAO ; LU YANJIE ; ZHANG HAQI ; GAO XIAOYUN ; YE HAIYANG</creatorcontrib><description>The invention discloses a course recommendation method based on a graph convolutional network and a learning style, and the method comprises the following steps: 1, predicting a score, coding course embedded information connected with a learner into first-order embedded information of the learner, and obtaining high-order embedded information through the first-order embedded information; aggregating each order of embedded information in the high-order embedded information into a single vector through an aggregation function to obtain an aggregation embedded representation; performing inner product operation on the aggregation embedded representation of the learner and the course to obtain a predicted score of the learner on the course; 2, respectively defining a learner summary and a course summary, calculating a learning style vector, and obtaining a course learning style similarity score according to the learner learning style vector and the course learning style vector; and step 3, optimizing the predictio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240827&amp;DB=EPODOC&amp;CC=CN&amp;NR=118551115A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240827&amp;DB=EPODOC&amp;CC=CN&amp;NR=118551115A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG GUODAO</creatorcontrib><creatorcontrib>GE YISU</creatorcontrib><creatorcontrib>WANG CHAOCHAO</creatorcontrib><creatorcontrib>LU YANJIE</creatorcontrib><creatorcontrib>ZHANG HAQI</creatorcontrib><creatorcontrib>GAO XIAOYUN</creatorcontrib><creatorcontrib>YE HAIYANG</creatorcontrib><title>Collaborative graph convolution and learning style-based course recommendation method</title><description>The invention discloses a course recommendation method based on a graph convolutional network and a learning style, and the method comprises the following steps: 1, predicting a score, coding course embedded information connected with a learner into first-order embedded information of the learner, and obtaining high-order embedded information through the first-order embedded information; aggregating each order of embedded information in the high-order embedded information into a single vector through an aggregation function to obtain an aggregation embedded representation; performing inner product operation on the aggregation embedded representation of the learner and the course to obtain a predicted score of the learner on the course; 2, respectively defining a learner summary and a course summary, calculating a learning style vector, and obtaining a course learning style similarity score according to the learner learning style vector and the course learning style vector; and step 3, optimizing the predictio</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUBuAuDqLeIR6gQ5CCqwTFyUnn8pr8toHkvZCkBW-viAdw-pZv3TyMhECDZKp-gRozpUlZ4UXCXL2wInYqgDJ7HlWpr4B2oAL3SXMuUBlWYgQ7-vaIOonbNqsnhYLdz02zv5zv5toiSY-SyIJRe3PT-th1WuvudPjnvAFUUzoU</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>ZHANG GUODAO</creator><creator>GE YISU</creator><creator>WANG CHAOCHAO</creator><creator>LU YANJIE</creator><creator>ZHANG HAQI</creator><creator>GAO XIAOYUN</creator><creator>YE HAIYANG</creator><scope>EVB</scope></search><sort><creationdate>20240827</creationdate><title>Collaborative graph convolution and learning style-based course recommendation method</title><author>ZHANG GUODAO ; GE YISU ; WANG CHAOCHAO ; LU YANJIE ; ZHANG HAQI ; GAO XIAOYUN ; YE HAIYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118551115A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG GUODAO</creatorcontrib><creatorcontrib>GE YISU</creatorcontrib><creatorcontrib>WANG CHAOCHAO</creatorcontrib><creatorcontrib>LU YANJIE</creatorcontrib><creatorcontrib>ZHANG HAQI</creatorcontrib><creatorcontrib>GAO XIAOYUN</creatorcontrib><creatorcontrib>YE HAIYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG GUODAO</au><au>GE YISU</au><au>WANG CHAOCHAO</au><au>LU YANJIE</au><au>ZHANG HAQI</au><au>GAO XIAOYUN</au><au>YE HAIYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Collaborative graph convolution and learning style-based course recommendation method</title><date>2024-08-27</date><risdate>2024</risdate><abstract>The invention discloses a course recommendation method based on a graph convolutional network and a learning style, and the method comprises the following steps: 1, predicting a score, coding course embedded information connected with a learner into first-order embedded information of the learner, and obtaining high-order embedded information through the first-order embedded information; aggregating each order of embedded information in the high-order embedded information into a single vector through an aggregation function to obtain an aggregation embedded representation; performing inner product operation on the aggregation embedded representation of the learner and the course to obtain a predicted score of the learner on the course; 2, respectively defining a learner summary and a course summary, calculating a learning style vector, and obtaining a course learning style similarity score according to the learner learning style vector and the course learning style vector; and step 3, optimizing the predictio</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118551115A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Collaborative graph convolution and learning style-based course recommendation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20GUODAO&rft.date=2024-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118551115A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true