Dynamic berth allocation method based on deep learning and objective weighting method

The invention discloses a parking space dynamic allocation method based on deep learning and an objective weighting method, and belongs to the field of computer vision and intelligent parking. On the basis of a first arrival first arrival parking mode, two reservation parking modes, namely, reservat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU WENKAI, MAO XINBO, PAN FAHUI, LIU SHUO, GAO GE, CHEN RONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU WENKAI
MAO XINBO
PAN FAHUI
LIU SHUO
GAO GE
CHEN RONG
description The invention discloses a parking space dynamic allocation method based on deep learning and an objective weighting method, and belongs to the field of computer vision and intelligent parking. On the basis of a first arrival first arrival parking mode, two reservation parking modes, namely, reservation first serving and auction reservation, are introduced, and two parameters are set; the parking berth proportion is a parking berth proportion # imgabs0 # for first arrival and first arrival parking and a parking berth proportion # imgabs1 # for first reservation and first service; according to the invention, the deep neural network and the CRITIC objective weighting method are used to realize the comprehensive decision-making and dynamic allocation of the parking space ratio in the hybrid parking mode, the parking resource configuration is optimized, the parking efficiency and convenience are improved, and a new thought is provided for the practical application of different parking reservation strategies. 本发明公开
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118538034A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118538034A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118538034A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAUBbNxIeodvgcQLFHoVqriypWuy0_ybCJpEpqgeHsregBXwxveTMV1_wrcO00KQ7HE3kfNxcVAPYqNhhRnGBq3ARJ58BBc6IjDKNUdurgH6AnX2fLx32ouJjf2GYsfZ2J5PFya0woptsiJNQJK25yrqt7Kei03O_nP5w3Lfjke</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic berth allocation method based on deep learning and objective weighting method</title><source>esp@cenet</source><creator>XU WENKAI ; MAO XINBO ; PAN FAHUI ; LIU SHUO ; GAO GE ; CHEN RONG</creator><creatorcontrib>XU WENKAI ; MAO XINBO ; PAN FAHUI ; LIU SHUO ; GAO GE ; CHEN RONG</creatorcontrib><description>The invention discloses a parking space dynamic allocation method based on deep learning and an objective weighting method, and belongs to the field of computer vision and intelligent parking. On the basis of a first arrival first arrival parking mode, two reservation parking modes, namely, reservation first serving and auction reservation, are introduced, and two parameters are set; the parking berth proportion is a parking berth proportion # imgabs0 # for first arrival and first arrival parking and a parking berth proportion # imgabs1 # for first reservation and first service; according to the invention, the deep neural network and the CRITIC objective weighting method are used to realize the comprehensive decision-making and dynamic allocation of the parking space ratio in the hybrid parking mode, the parking resource configuration is optimized, the parking efficiency and convenience are improved, and a new thought is provided for the practical application of different parking reservation strategies. 本发明公开</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118538034A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118538034A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU WENKAI</creatorcontrib><creatorcontrib>MAO XINBO</creatorcontrib><creatorcontrib>PAN FAHUI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>GAO GE</creatorcontrib><creatorcontrib>CHEN RONG</creatorcontrib><title>Dynamic berth allocation method based on deep learning and objective weighting method</title><description>The invention discloses a parking space dynamic allocation method based on deep learning and an objective weighting method, and belongs to the field of computer vision and intelligent parking. On the basis of a first arrival first arrival parking mode, two reservation parking modes, namely, reservation first serving and auction reservation, are introduced, and two parameters are set; the parking berth proportion is a parking berth proportion # imgabs0 # for first arrival and first arrival parking and a parking berth proportion # imgabs1 # for first reservation and first service; according to the invention, the deep neural network and the CRITIC objective weighting method are used to realize the comprehensive decision-making and dynamic allocation of the parking space ratio in the hybrid parking mode, the parking resource configuration is optimized, the parking efficiency and convenience are improved, and a new thought is provided for the practical application of different parking reservation strategies. 本发明公开</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAUBbNxIeodvgcQLFHoVqriypWuy0_ybCJpEpqgeHsregBXwxveTMV1_wrcO00KQ7HE3kfNxcVAPYqNhhRnGBq3ARJ58BBc6IjDKNUdurgH6AnX2fLx32ouJjf2GYsfZ2J5PFya0woptsiJNQJK25yrqt7Kei03O_nP5w3Lfjke</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>XU WENKAI</creator><creator>MAO XINBO</creator><creator>PAN FAHUI</creator><creator>LIU SHUO</creator><creator>GAO GE</creator><creator>CHEN RONG</creator><scope>EVB</scope></search><sort><creationdate>20240823</creationdate><title>Dynamic berth allocation method based on deep learning and objective weighting method</title><author>XU WENKAI ; MAO XINBO ; PAN FAHUI ; LIU SHUO ; GAO GE ; CHEN RONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118538034A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU WENKAI</creatorcontrib><creatorcontrib>MAO XINBO</creatorcontrib><creatorcontrib>PAN FAHUI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>GAO GE</creatorcontrib><creatorcontrib>CHEN RONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU WENKAI</au><au>MAO XINBO</au><au>PAN FAHUI</au><au>LIU SHUO</au><au>GAO GE</au><au>CHEN RONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic berth allocation method based on deep learning and objective weighting method</title><date>2024-08-23</date><risdate>2024</risdate><abstract>The invention discloses a parking space dynamic allocation method based on deep learning and an objective weighting method, and belongs to the field of computer vision and intelligent parking. On the basis of a first arrival first arrival parking mode, two reservation parking modes, namely, reservation first serving and auction reservation, are introduced, and two parameters are set; the parking berth proportion is a parking berth proportion # imgabs0 # for first arrival and first arrival parking and a parking berth proportion # imgabs1 # for first reservation and first service; according to the invention, the deep neural network and the CRITIC objective weighting method are used to realize the comprehensive decision-making and dynamic allocation of the parking space ratio in the hybrid parking mode, the parking resource configuration is optimized, the parking efficiency and convenience are improved, and a new thought is provided for the practical application of different parking reservation strategies. 本发明公开</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118538034A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title Dynamic berth allocation method based on deep learning and objective weighting method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20WENKAI&rft.date=2024-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118538034A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true