Production efficiency supervision method
The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | REN ZECHENG LIU HONGNAN LEI QUJIANG XIA SHENGBAO XUE YUTONG KOU XINZI |
description | The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted.
本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118536872A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118536872A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118536872A3</originalsourceid><addsrcrecordid>eNrjZNAIKMpPKU0uyczPU0hNS8tMzkzNS65UKC4tSC0qyywGCeemlmTkp_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC1NjMwtzI0djYtQAABmCKQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Production efficiency supervision method</title><source>esp@cenet</source><creator>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</creator><creatorcontrib>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</creatorcontrib><description>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted.
本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240823&DB=EPODOC&CC=CN&NR=118536872A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240823&DB=EPODOC&CC=CN&NR=118536872A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN ZECHENG</creatorcontrib><creatorcontrib>LIU HONGNAN</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XIA SHENGBAO</creatorcontrib><creatorcontrib>XUE YUTONG</creatorcontrib><creatorcontrib>KOU XINZI</creatorcontrib><title>Production efficiency supervision method</title><description>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted.
本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAIKMpPKU0uyczPU0hNS8tMzkzNS65UKC4tSC0qyywGCeemlmTkp_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC1NjMwtzI0djYtQAABmCKQU</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>REN ZECHENG</creator><creator>LIU HONGNAN</creator><creator>LEI QUJIANG</creator><creator>XIA SHENGBAO</creator><creator>XUE YUTONG</creator><creator>KOU XINZI</creator><scope>EVB</scope></search><sort><creationdate>20240823</creationdate><title>Production efficiency supervision method</title><author>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118536872A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>REN ZECHENG</creatorcontrib><creatorcontrib>LIU HONGNAN</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XIA SHENGBAO</creatorcontrib><creatorcontrib>XUE YUTONG</creatorcontrib><creatorcontrib>KOU XINZI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN ZECHENG</au><au>LIU HONGNAN</au><au>LEI QUJIANG</au><au>XIA SHENGBAO</au><au>XUE YUTONG</au><au>KOU XINZI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Production efficiency supervision method</title><date>2024-08-23</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted.
本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118536872A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Production efficiency supervision method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20ZECHENG&rft.date=2024-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118536872A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |