Production efficiency supervision method

The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: REN ZECHENG, LIU HONGNAN, LEI QUJIANG, XIA SHENGBAO, XUE YUTONG, KOU XINZI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator REN ZECHENG
LIU HONGNAN
LEI QUJIANG
XIA SHENGBAO
XUE YUTONG
KOU XINZI
description The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted. 本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118536872A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118536872A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118536872A3</originalsourceid><addsrcrecordid>eNrjZNAIKMpPKU0uyczPU0hNS8tMzkzNS65UKC4tSC0qyywGCeemlmTkp_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC1NjMwtzI0djYtQAABmCKQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Production efficiency supervision method</title><source>esp@cenet</source><creator>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</creator><creatorcontrib>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</creatorcontrib><description>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted. 本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118536872A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118536872A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN ZECHENG</creatorcontrib><creatorcontrib>LIU HONGNAN</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XIA SHENGBAO</creatorcontrib><creatorcontrib>XUE YUTONG</creatorcontrib><creatorcontrib>KOU XINZI</creatorcontrib><title>Production efficiency supervision method</title><description>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted. 本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAIKMpPKU0uyczPU0hNS8tMzkzNS65UKC4tSC0qyywGCeemlmTkp_AwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC1NjMwtzI0djYtQAABmCKQU</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>REN ZECHENG</creator><creator>LIU HONGNAN</creator><creator>LEI QUJIANG</creator><creator>XIA SHENGBAO</creator><creator>XUE YUTONG</creator><creator>KOU XINZI</creator><scope>EVB</scope></search><sort><creationdate>20240823</creationdate><title>Production efficiency supervision method</title><author>REN ZECHENG ; LIU HONGNAN ; LEI QUJIANG ; XIA SHENGBAO ; XUE YUTONG ; KOU XINZI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118536872A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>REN ZECHENG</creatorcontrib><creatorcontrib>LIU HONGNAN</creatorcontrib><creatorcontrib>LEI QUJIANG</creatorcontrib><creatorcontrib>XIA SHENGBAO</creatorcontrib><creatorcontrib>XUE YUTONG</creatorcontrib><creatorcontrib>KOU XINZI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN ZECHENG</au><au>LIU HONGNAN</au><au>LEI QUJIANG</au><au>XIA SHENGBAO</au><au>XUE YUTONG</au><au>KOU XINZI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Production efficiency supervision method</title><date>2024-08-23</date><risdate>2024</risdate><abstract>The invention belongs to the technical field of artificial intelligence supervision algorithms, and particularly relates to a production efficiency supervision method, which realizes the design of a neural network through text features and image features in combination with an attention mechanism, can play an effective attention degree analysis in production activities, and improves the production efficiency. And when the system is put into use, whether the employees are demotivated or not can be judged only by transmitting video data, so that the supervision task is completed, and production activities are effectively assisted. 本发明属于人工智能监管算法技术领域,具体涉及一种生产效率监管方法,通过文本特征以及图像特征并结合注意力机制实现了神经网络的设计,能够在生产活动中起到有效的专注度分析,在投入使用时仅需要传入视频数据即可完成判断员工是否消极怠工从而完成监工任务,从而有效协助生产活动。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118536872A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Production efficiency supervision method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20ZECHENG&rft.date=2024-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118536872A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true