Rotating machine fault diagnosis method and system

The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI ZHECONG, YUAN YICHEN, HE YUANBIAO, QIAO ZIJIAN, YANG CHANGPIAO, LIN LIFENG, ZHANG CHENGLONG, NING SIYUAN, XIE BIAOBIAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI ZHECONG
YUAN YICHEN
HE YUANBIAO
QIAO ZIJIAN
YANG CHANGPIAO
LIN LIFENG
ZHANG CHENGLONG
NING SIYUAN
XIE BIAOBIAO
description The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118535996A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118535996A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118535996A3</originalsourceid><addsrcrecordid>eNrjZDAKyi9JLMnMS1fITUzOyMxLVUhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFqbGppaWZo7GxKgBANqULEo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rotating machine fault diagnosis method and system</title><source>esp@cenet</source><creator>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</creator><creatorcontrib>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</creatorcontrib><description>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118535996A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240823&amp;DB=EPODOC&amp;CC=CN&amp;NR=118535996A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI ZHECONG</creatorcontrib><creatorcontrib>YUAN YICHEN</creatorcontrib><creatorcontrib>HE YUANBIAO</creatorcontrib><creatorcontrib>QIAO ZIJIAN</creatorcontrib><creatorcontrib>YANG CHANGPIAO</creatorcontrib><creatorcontrib>LIN LIFENG</creatorcontrib><creatorcontrib>ZHANG CHENGLONG</creatorcontrib><creatorcontrib>NING SIYUAN</creatorcontrib><creatorcontrib>XIE BIAOBIAO</creatorcontrib><title>Rotating machine fault diagnosis method and system</title><description>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAKyi9JLMnMS1fITUzOyMxLVUhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFqbGppaWZo7GxKgBANqULEo</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>LI ZHECONG</creator><creator>YUAN YICHEN</creator><creator>HE YUANBIAO</creator><creator>QIAO ZIJIAN</creator><creator>YANG CHANGPIAO</creator><creator>LIN LIFENG</creator><creator>ZHANG CHENGLONG</creator><creator>NING SIYUAN</creator><creator>XIE BIAOBIAO</creator><scope>EVB</scope></search><sort><creationdate>20240823</creationdate><title>Rotating machine fault diagnosis method and system</title><author>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118535996A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI ZHECONG</creatorcontrib><creatorcontrib>YUAN YICHEN</creatorcontrib><creatorcontrib>HE YUANBIAO</creatorcontrib><creatorcontrib>QIAO ZIJIAN</creatorcontrib><creatorcontrib>YANG CHANGPIAO</creatorcontrib><creatorcontrib>LIN LIFENG</creatorcontrib><creatorcontrib>ZHANG CHENGLONG</creatorcontrib><creatorcontrib>NING SIYUAN</creatorcontrib><creatorcontrib>XIE BIAOBIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI ZHECONG</au><au>YUAN YICHEN</au><au>HE YUANBIAO</au><au>QIAO ZIJIAN</au><au>YANG CHANGPIAO</au><au>LIN LIFENG</au><au>ZHANG CHENGLONG</au><au>NING SIYUAN</au><au>XIE BIAOBIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rotating machine fault diagnosis method and system</title><date>2024-08-23</date><risdate>2024</risdate><abstract>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118535996A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Rotating machine fault diagnosis method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20ZHECONG&rft.date=2024-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118535996A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true