Rotating machine fault diagnosis method and system
The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, w...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI ZHECONG YUAN YICHEN HE YUANBIAO QIAO ZIJIAN YANG CHANGPIAO LIN LIFENG ZHANG CHENGLONG NING SIYUAN XIE BIAOBIAO |
description | The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118535996A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118535996A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118535996A3</originalsourceid><addsrcrecordid>eNrjZDAKyi9JLMnMS1fITUzOyMxLVUhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFqbGppaWZo7GxKgBANqULEo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rotating machine fault diagnosis method and system</title><source>esp@cenet</source><creator>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</creator><creatorcontrib>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</creatorcontrib><description>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240823&DB=EPODOC&CC=CN&NR=118535996A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240823&DB=EPODOC&CC=CN&NR=118535996A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI ZHECONG</creatorcontrib><creatorcontrib>YUAN YICHEN</creatorcontrib><creatorcontrib>HE YUANBIAO</creatorcontrib><creatorcontrib>QIAO ZIJIAN</creatorcontrib><creatorcontrib>YANG CHANGPIAO</creatorcontrib><creatorcontrib>LIN LIFENG</creatorcontrib><creatorcontrib>ZHANG CHENGLONG</creatorcontrib><creatorcontrib>NING SIYUAN</creatorcontrib><creatorcontrib>XIE BIAOBIAO</creatorcontrib><title>Rotating machine fault diagnosis method and system</title><description>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAKyi9JLMnMS1fITUzOyMxLVUhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFqbGppaWZo7GxKgBANqULEo</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>LI ZHECONG</creator><creator>YUAN YICHEN</creator><creator>HE YUANBIAO</creator><creator>QIAO ZIJIAN</creator><creator>YANG CHANGPIAO</creator><creator>LIN LIFENG</creator><creator>ZHANG CHENGLONG</creator><creator>NING SIYUAN</creator><creator>XIE BIAOBIAO</creator><scope>EVB</scope></search><sort><creationdate>20240823</creationdate><title>Rotating machine fault diagnosis method and system</title><author>LI ZHECONG ; YUAN YICHEN ; HE YUANBIAO ; QIAO ZIJIAN ; YANG CHANGPIAO ; LIN LIFENG ; ZHANG CHENGLONG ; NING SIYUAN ; XIE BIAOBIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118535996A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI ZHECONG</creatorcontrib><creatorcontrib>YUAN YICHEN</creatorcontrib><creatorcontrib>HE YUANBIAO</creatorcontrib><creatorcontrib>QIAO ZIJIAN</creatorcontrib><creatorcontrib>YANG CHANGPIAO</creatorcontrib><creatorcontrib>LIN LIFENG</creatorcontrib><creatorcontrib>ZHANG CHENGLONG</creatorcontrib><creatorcontrib>NING SIYUAN</creatorcontrib><creatorcontrib>XIE BIAOBIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI ZHECONG</au><au>YUAN YICHEN</au><au>HE YUANBIAO</au><au>QIAO ZIJIAN</au><au>YANG CHANGPIAO</au><au>LIN LIFENG</au><au>ZHANG CHENGLONG</au><au>NING SIYUAN</au><au>XIE BIAOBIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rotating machine fault diagnosis method and system</title><date>2024-08-23</date><risdate>2024</risdate><abstract>The invention discloses a rotating machine fault diagnosis method and system, and belongs to the technical field of fault diagnosis, and the method comprises the steps: converting a vibration signal corresponding to a rotating machine fault sample into an RGB image; constructing a diagnosis model, wherein the diagnosis model comprises four SDTA encoders and a softmax classifier which are connected in sequence; each STDA encoder comprises a lower sampling layer, a convolution encoder and a separation depth transpose attention encoder; a loss function is constructed, transfer learning is carried out by adjusting loss function weights of different domains, and a minimized cross entropy loss function is obtained; using the training set and the minimum cross entropy loss function to train the diagnosis model; and obtaining an original vibration signal of the rotating machine to be diagnosed, converting the original vibration signal into an RGB image, inputting the RGB image into the trained diagnosis model, and ou</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118535996A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Rotating machine fault diagnosis method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20ZHECONG&rft.date=2024-08-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118535996A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |