Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method
The invention discloses a data-knowledge fusion driven few-sample photovoltaic power integrated prediction method. The method comprises the following steps: S1, generating a large amount of historical data related to a photovoltaic station to be predicted; s2, training the deep learning prediction m...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | QIN YUNYI HUANG YUNYU LI CONG LV RENZHOU ZHANG ZHEN LI SONGLING WU YAN MO DONGYUAN HUANG DONGYAN |
description | The invention discloses a data-knowledge fusion driven few-sample photovoltaic power integrated prediction method. The method comprises the following steps: S1, generating a large amount of historical data related to a photovoltaic station to be predicted; s2, training the deep learning prediction model by using a large amount of generated historical data of the photovoltaic field station to be predicted, and establishing a first photovoltaic power generation prediction model; s3, training a prediction model; and S4, inputting a small number of samples of the target domain into the prediction model trained based on the source domain, and performing fine adjustment and migration of model parameters to obtain a second photovoltaic power generation prediction model. And S5, based on the photovoltaic power generation physical process, establishing a photovoltaic power generation prediction model to obtain a third photovoltaic power generation prediction model. And step S6, carrying out training and prediction of |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118520411A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118520411A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118520411A3</originalsourceid><addsrcrecordid>eNqNy00KwjAQhuFuXIh6h_EABeMPuJWquHIluCxD87UNppmQjO31RfAArt7N886L55mVy1eQycN2oPadnQSyyY0I1GIqMw_Rg2IvKqN4ZddQlAmJXFB0iRWWYoJ1jX7XAdqLXRazln3G6tdFsb5eHtWtRJQaOXKDAK2ruzHHw3azN-a0-8d8AMkoOsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method</title><source>esp@cenet</source><creator>QIN YUNYI ; HUANG YUNYU ; LI CONG ; LV RENZHOU ; ZHANG ZHEN ; LI SONGLING ; WU YAN ; MO DONGYUAN ; HUANG DONGYAN</creator><creatorcontrib>QIN YUNYI ; HUANG YUNYU ; LI CONG ; LV RENZHOU ; ZHANG ZHEN ; LI SONGLING ; WU YAN ; MO DONGYUAN ; HUANG DONGYAN</creatorcontrib><description>The invention discloses a data-knowledge fusion driven few-sample photovoltaic power integrated prediction method. The method comprises the following steps: S1, generating a large amount of historical data related to a photovoltaic station to be predicted; s2, training the deep learning prediction model by using a large amount of generated historical data of the photovoltaic field station to be predicted, and establishing a first photovoltaic power generation prediction model; s3, training a prediction model; and S4, inputting a small number of samples of the target domain into the prediction model trained based on the source domain, and performing fine adjustment and migration of model parameters to obtain a second photovoltaic power generation prediction model. And S5, based on the photovoltaic power generation physical process, establishing a photovoltaic power generation prediction model to obtain a third photovoltaic power generation prediction model. And step S6, carrying out training and prediction of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240820&DB=EPODOC&CC=CN&NR=118520411A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240820&DB=EPODOC&CC=CN&NR=118520411A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIN YUNYI</creatorcontrib><creatorcontrib>HUANG YUNYU</creatorcontrib><creatorcontrib>LI CONG</creatorcontrib><creatorcontrib>LV RENZHOU</creatorcontrib><creatorcontrib>ZHANG ZHEN</creatorcontrib><creatorcontrib>LI SONGLING</creatorcontrib><creatorcontrib>WU YAN</creatorcontrib><creatorcontrib>MO DONGYUAN</creatorcontrib><creatorcontrib>HUANG DONGYAN</creatorcontrib><title>Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method</title><description>The invention discloses a data-knowledge fusion driven few-sample photovoltaic power integrated prediction method. The method comprises the following steps: S1, generating a large amount of historical data related to a photovoltaic station to be predicted; s2, training the deep learning prediction model by using a large amount of generated historical data of the photovoltaic field station to be predicted, and establishing a first photovoltaic power generation prediction model; s3, training a prediction model; and S4, inputting a small number of samples of the target domain into the prediction model trained based on the source domain, and performing fine adjustment and migration of model parameters to obtain a second photovoltaic power generation prediction model. And S5, based on the photovoltaic power generation physical process, establishing a photovoltaic power generation prediction model to obtain a third photovoltaic power generation prediction model. And step S6, carrying out training and prediction of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy00KwjAQhuFuXIh6h_EABeMPuJWquHIluCxD87UNppmQjO31RfAArt7N886L55mVy1eQycN2oPadnQSyyY0I1GIqMw_Rg2IvKqN4ZddQlAmJXFB0iRWWYoJ1jX7XAdqLXRazln3G6tdFsb5eHtWtRJQaOXKDAK2ruzHHw3azN-a0-8d8AMkoOsI</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>QIN YUNYI</creator><creator>HUANG YUNYU</creator><creator>LI CONG</creator><creator>LV RENZHOU</creator><creator>ZHANG ZHEN</creator><creator>LI SONGLING</creator><creator>WU YAN</creator><creator>MO DONGYUAN</creator><creator>HUANG DONGYAN</creator><scope>EVB</scope></search><sort><creationdate>20240820</creationdate><title>Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method</title><author>QIN YUNYI ; HUANG YUNYU ; LI CONG ; LV RENZHOU ; ZHANG ZHEN ; LI SONGLING ; WU YAN ; MO DONGYUAN ; HUANG DONGYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118520411A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIN YUNYI</creatorcontrib><creatorcontrib>HUANG YUNYU</creatorcontrib><creatorcontrib>LI CONG</creatorcontrib><creatorcontrib>LV RENZHOU</creatorcontrib><creatorcontrib>ZHANG ZHEN</creatorcontrib><creatorcontrib>LI SONGLING</creatorcontrib><creatorcontrib>WU YAN</creatorcontrib><creatorcontrib>MO DONGYUAN</creatorcontrib><creatorcontrib>HUANG DONGYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIN YUNYI</au><au>HUANG YUNYU</au><au>LI CONG</au><au>LV RENZHOU</au><au>ZHANG ZHEN</au><au>LI SONGLING</au><au>WU YAN</au><au>MO DONGYUAN</au><au>HUANG DONGYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method</title><date>2024-08-20</date><risdate>2024</risdate><abstract>The invention discloses a data-knowledge fusion driven few-sample photovoltaic power integrated prediction method. The method comprises the following steps: S1, generating a large amount of historical data related to a photovoltaic station to be predicted; s2, training the deep learning prediction model by using a large amount of generated historical data of the photovoltaic field station to be predicted, and establishing a first photovoltaic power generation prediction model; s3, training a prediction model; and S4, inputting a small number of samples of the target domain into the prediction model trained based on the source domain, and performing fine adjustment and migration of model parameters to obtain a second photovoltaic power generation prediction model. And S5, based on the photovoltaic power generation physical process, establishing a photovoltaic power generation prediction model to obtain a third photovoltaic power generation prediction model. And step S6, carrying out training and prediction of</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118520411A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Data-knowledge fusion driven few-sample photovoltaic power integrated prediction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIN%20YUNYI&rft.date=2024-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118520411A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |