Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning
The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifyin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG WENGANG WANG YANKUN LI JIAYI WANG YUNHAO WANG LUQI JIANG CHENG ZHU CHUN LIU SONGLIN XU JIN LIU JING HAO XINGENG KANG YANFEI LI TAO |
description | The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118520273A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118520273A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118520273A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QABYxBtJShWNtqHSfZnXZhslp2N4O3dwgNYvf8-b1nYx8gipfIYBCQcLUrtOe8I6ybPkk9vVJwB6aw9QnKdE5c-hDfLzClXNCK9JkMdKwxlT5G9Dogk4Oidt-tiMbAoNj-uiu318mxuJcLUQgP38Ehtc6-q02G_2x_rc_1P8wUgUkC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><source>esp@cenet</source><creator>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</creator><creatorcontrib>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</creatorcontrib><description>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240820&DB=EPODOC&CC=CN&NR=118520273A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240820&DB=EPODOC&CC=CN&NR=118520273A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG WENGANG</creatorcontrib><creatorcontrib>WANG YANKUN</creatorcontrib><creatorcontrib>LI JIAYI</creatorcontrib><creatorcontrib>WANG YUNHAO</creatorcontrib><creatorcontrib>WANG LUQI</creatorcontrib><creatorcontrib>JIANG CHENG</creatorcontrib><creatorcontrib>ZHU CHUN</creatorcontrib><creatorcontrib>LIU SONGLIN</creatorcontrib><creatorcontrib>XU JIN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>HAO XINGENG</creatorcontrib><creatorcontrib>KANG YANFEI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><description>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QABYxBtJShWNtqHSfZnXZhslp2N4O3dwgNYvf8-b1nYx8gipfIYBCQcLUrtOe8I6ybPkk9vVJwB6aw9QnKdE5c-hDfLzClXNCK9JkMdKwxlT5G9Dogk4Oidt-tiMbAoNj-uiu318mxuJcLUQgP38Ehtc6-q02G_2x_rc_1P8wUgUkC4</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>ZHANG WENGANG</creator><creator>WANG YANKUN</creator><creator>LI JIAYI</creator><creator>WANG YUNHAO</creator><creator>WANG LUQI</creator><creator>JIANG CHENG</creator><creator>ZHU CHUN</creator><creator>LIU SONGLIN</creator><creator>XU JIN</creator><creator>LIU JING</creator><creator>HAO XINGENG</creator><creator>KANG YANFEI</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20240820</creationdate><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><author>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118520273A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG WENGANG</creatorcontrib><creatorcontrib>WANG YANKUN</creatorcontrib><creatorcontrib>LI JIAYI</creatorcontrib><creatorcontrib>WANG YUNHAO</creatorcontrib><creatorcontrib>WANG LUQI</creatorcontrib><creatorcontrib>JIANG CHENG</creatorcontrib><creatorcontrib>ZHU CHUN</creatorcontrib><creatorcontrib>LIU SONGLIN</creatorcontrib><creatorcontrib>XU JIN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>HAO XINGENG</creatorcontrib><creatorcontrib>KANG YANFEI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG WENGANG</au><au>WANG YANKUN</au><au>LI JIAYI</au><au>WANG YUNHAO</au><au>WANG LUQI</au><au>JIANG CHENG</au><au>ZHU CHUN</au><au>LIU SONGLIN</au><au>XU JIN</au><au>LIU JING</au><au>HAO XINGENG</au><au>KANG YANFEI</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><date>2024-08-20</date><risdate>2024</risdate><abstract>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118520273A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20WENGANG&rft.date=2024-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118520273A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |