Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning

The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG WENGANG, WANG YANKUN, LI JIAYI, WANG YUNHAO, WANG LUQI, JIANG CHENG, ZHU CHUN, LIU SONGLIN, XU JIN, LIU JING, HAO XINGENG, KANG YANFEI, LI TAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG WENGANG
WANG YANKUN
LI JIAYI
WANG YUNHAO
WANG LUQI
JIANG CHENG
ZHU CHUN
LIU SONGLIN
XU JIN
LIU JING
HAO XINGENG
KANG YANFEI
LI TAO
description The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118520273A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118520273A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118520273A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QABYxBtJShWNtqHSfZnXZhslp2N4O3dwgNYvf8-b1nYx8gipfIYBCQcLUrtOe8I6ybPkk9vVJwB6aw9QnKdE5c-hDfLzClXNCK9JkMdKwxlT5G9Dogk4Oidt-tiMbAoNj-uiu318mxuJcLUQgP38Ehtc6-q02G_2x_rc_1P8wUgUkC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><source>esp@cenet</source><creator>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</creator><creatorcontrib>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</creatorcontrib><description>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240820&amp;DB=EPODOC&amp;CC=CN&amp;NR=118520273A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240820&amp;DB=EPODOC&amp;CC=CN&amp;NR=118520273A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG WENGANG</creatorcontrib><creatorcontrib>WANG YANKUN</creatorcontrib><creatorcontrib>LI JIAYI</creatorcontrib><creatorcontrib>WANG YUNHAO</creatorcontrib><creatorcontrib>WANG LUQI</creatorcontrib><creatorcontrib>JIANG CHENG</creatorcontrib><creatorcontrib>ZHU CHUN</creatorcontrib><creatorcontrib>LIU SONGLIN</creatorcontrib><creatorcontrib>XU JIN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>HAO XINGENG</creatorcontrib><creatorcontrib>KANG YANFEI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><description>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QABYxBtJShWNtqHSfZnXZhslp2N4O3dwgNYvf8-b1nYx8gipfIYBCQcLUrtOe8I6ybPkk9vVJwB6aw9QnKdE5c-hDfLzClXNCK9JkMdKwxlT5G9Dogk4Oidt-tiMbAoNj-uiu318mxuJcLUQgP38Ehtc6-q02G_2x_rc_1P8wUgUkC4</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>ZHANG WENGANG</creator><creator>WANG YANKUN</creator><creator>LI JIAYI</creator><creator>WANG YUNHAO</creator><creator>WANG LUQI</creator><creator>JIANG CHENG</creator><creator>ZHU CHUN</creator><creator>LIU SONGLIN</creator><creator>XU JIN</creator><creator>LIU JING</creator><creator>HAO XINGENG</creator><creator>KANG YANFEI</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20240820</creationdate><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><author>ZHANG WENGANG ; WANG YANKUN ; LI JIAYI ; WANG YUNHAO ; WANG LUQI ; JIANG CHENG ; ZHU CHUN ; LIU SONGLIN ; XU JIN ; LIU JING ; HAO XINGENG ; KANG YANFEI ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118520273A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG WENGANG</creatorcontrib><creatorcontrib>WANG YANKUN</creatorcontrib><creatorcontrib>LI JIAYI</creatorcontrib><creatorcontrib>WANG YUNHAO</creatorcontrib><creatorcontrib>WANG LUQI</creatorcontrib><creatorcontrib>JIANG CHENG</creatorcontrib><creatorcontrib>ZHU CHUN</creatorcontrib><creatorcontrib>LIU SONGLIN</creatorcontrib><creatorcontrib>XU JIN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>HAO XINGENG</creatorcontrib><creatorcontrib>KANG YANFEI</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG WENGANG</au><au>WANG YANKUN</au><au>LI JIAYI</au><au>WANG YUNHAO</au><au>WANG LUQI</au><au>JIANG CHENG</au><au>ZHU CHUN</au><au>LIU SONGLIN</au><au>XU JIN</au><au>LIU JING</au><au>HAO XINGENG</au><au>KANG YANFEI</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning</title><date>2024-08-20</date><risdate>2024</risdate><abstract>The invention discloses a small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning, and the method comprises the following steps: S1, obtaining a historical landslide record of a research region, obtaining influence factor multi-source data, and unifying the spatial resolution, a projection coordinate system and a geographic coordinate system of the multi-source data; s2, acquiring an influence factor layer related to a landslide, extracting landslide influence factor information from the multi-source data through a GIS platform, and establishing a landslide susceptibility influence factor system; s3, on the basis of the landslide sample data set of the source domain, constructing a deep learning model, and pre-training the model; according to the method, the problem that the landslide susceptibility is predicted by using a machine learning method under the condition that the landslide sample size of a large-scale region is insufficient is solved; the investment</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118520273A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Small-sample large-scale regional landslide susceptibility evaluation method based on transfer learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20WENGANG&rft.date=2024-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118520273A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true