Mongolian speech emotion recognition method based on Whisper pre-training model
The Mongolian speech emotion recognition method based on the Whisper pre-training model comprises the steps that Mongolian emotion speech audio data are acquired, and each Mongolian audio corresponds to one Mongolian text; extracting a logarithmic Mel spectrogram and rhythmic features from the emoti...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUAN SHUAI REN-QING DAOERJI OUNIER JI YATU LI LEIXIAO SHI BAO |
description | The Mongolian speech emotion recognition method based on the Whisper pre-training model comprises the steps that Mongolian emotion speech audio data are acquired, and each Mongolian audio corresponds to one Mongolian text; extracting a logarithmic Mel spectrogram and rhythmic features from the emotional speech; the Whisper pre-training model is input into the Whisper pre-training model, then intermediate features, obtained from a Whisper model encoder part, of encoders of all layers are processed, and the multi-head attention module is adapted to the input dimension of the multi-head attention module through two continuous non-linear full-connection layers; the processed spectrum features and rhythm features are input into a multi-head attention module, key value pairs in an attention mechanism are calculated through the spectrum features, and query vectors are calculated through the rhythm features; after the output of the attention module is obtained, the mean value and the variance of the output are calcul |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118506809A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118506809A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118506809A3</originalsourceid><addsrcrecordid>eNqNisEKwjAQBXvxIOo_rB9QaBGlHqUoXtSL4LHE9jVZaHZDkv_HIn6Ap5mBWRaPm4rViY1QCkDvCF4zq1BEr1b46x7Z6UBvkzDQ3C_H8x0pRJQ5GhYWS14HTOtiMZopYfPjqthezs_2WiJohxRMD0Hu2ntdN_vq0FTH0-6f5wOBRjc6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mongolian speech emotion recognition method based on Whisper pre-training model</title><source>esp@cenet</source><creator>YUAN SHUAI ; REN-QING DAOERJI ; OUNIER ; JI YATU ; LI LEIXIAO ; SHI BAO</creator><creatorcontrib>YUAN SHUAI ; REN-QING DAOERJI ; OUNIER ; JI YATU ; LI LEIXIAO ; SHI BAO</creatorcontrib><description>The Mongolian speech emotion recognition method based on the Whisper pre-training model comprises the steps that Mongolian emotion speech audio data are acquired, and each Mongolian audio corresponds to one Mongolian text; extracting a logarithmic Mel spectrogram and rhythmic features from the emotional speech; the Whisper pre-training model is input into the Whisper pre-training model, then intermediate features, obtained from a Whisper model encoder part, of encoders of all layers are processed, and the multi-head attention module is adapted to the input dimension of the multi-head attention module through two continuous non-linear full-connection layers; the processed spectrum features and rhythm features are input into a multi-head attention module, key value pairs in an attention mechanism are calculated through the spectrum features, and query vectors are calculated through the rhythm features; after the output of the attention module is obtained, the mean value and the variance of the output are calcul</description><language>chi ; eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118506809A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118506809A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN SHUAI</creatorcontrib><creatorcontrib>REN-QING DAOERJI</creatorcontrib><creatorcontrib>OUNIER</creatorcontrib><creatorcontrib>JI YATU</creatorcontrib><creatorcontrib>LI LEIXIAO</creatorcontrib><creatorcontrib>SHI BAO</creatorcontrib><title>Mongolian speech emotion recognition method based on Whisper pre-training model</title><description>The Mongolian speech emotion recognition method based on the Whisper pre-training model comprises the steps that Mongolian emotion speech audio data are acquired, and each Mongolian audio corresponds to one Mongolian text; extracting a logarithmic Mel spectrogram and rhythmic features from the emotional speech; the Whisper pre-training model is input into the Whisper pre-training model, then intermediate features, obtained from a Whisper model encoder part, of encoders of all layers are processed, and the multi-head attention module is adapted to the input dimension of the multi-head attention module through two continuous non-linear full-connection layers; the processed spectrum features and rhythm features are input into a multi-head attention module, key value pairs in an attention mechanism are calculated through the spectrum features, and query vectors are calculated through the rhythm features; after the output of the attention module is obtained, the mean value and the variance of the output are calcul</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKwjAQBXvxIOo_rB9QaBGlHqUoXtSL4LHE9jVZaHZDkv_HIn6Ap5mBWRaPm4rViY1QCkDvCF4zq1BEr1b46x7Z6UBvkzDQ3C_H8x0pRJQ5GhYWS14HTOtiMZopYfPjqthezs_2WiJohxRMD0Hu2ntdN_vq0FTH0-6f5wOBRjc6</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>YUAN SHUAI</creator><creator>REN-QING DAOERJI</creator><creator>OUNIER</creator><creator>JI YATU</creator><creator>LI LEIXIAO</creator><creator>SHI BAO</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Mongolian speech emotion recognition method based on Whisper pre-training model</title><author>YUAN SHUAI ; REN-QING DAOERJI ; OUNIER ; JI YATU ; LI LEIXIAO ; SHI BAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118506809A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN SHUAI</creatorcontrib><creatorcontrib>REN-QING DAOERJI</creatorcontrib><creatorcontrib>OUNIER</creatorcontrib><creatorcontrib>JI YATU</creatorcontrib><creatorcontrib>LI LEIXIAO</creatorcontrib><creatorcontrib>SHI BAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN SHUAI</au><au>REN-QING DAOERJI</au><au>OUNIER</au><au>JI YATU</au><au>LI LEIXIAO</au><au>SHI BAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mongolian speech emotion recognition method based on Whisper pre-training model</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The Mongolian speech emotion recognition method based on the Whisper pre-training model comprises the steps that Mongolian emotion speech audio data are acquired, and each Mongolian audio corresponds to one Mongolian text; extracting a logarithmic Mel spectrogram and rhythmic features from the emotional speech; the Whisper pre-training model is input into the Whisper pre-training model, then intermediate features, obtained from a Whisper model encoder part, of encoders of all layers are processed, and the multi-head attention module is adapted to the input dimension of the multi-head attention module through two continuous non-linear full-connection layers; the processed spectrum features and rhythm features are input into a multi-head attention module, key value pairs in an attention mechanism are calculated through the spectrum features, and query vectors are calculated through the rhythm features; after the output of the attention module is obtained, the mean value and the variance of the output are calcul</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118506809A |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Mongolian speech emotion recognition method based on Whisper pre-training model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20SHUAI&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118506809A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |