Lithium battery health state estimation method based on adaptive migration
The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online unde...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIAO XU LYU YI WEN ZHENFEI ZHOU NINGXU |
description | The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503924A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503924A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503924A3</originalsourceid><addsrcrecordid>eNrjZPDyySzJyCzNVUhKLClJLapUyEhNzCnJUCguSSxJVUgtLsnMTSzJzM9TyE0tychPASorTk1RAPITUxILSjLLUhVyM9OLwEp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWpgbGlkYmjMTFqAFFjNXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lithium battery health state estimation method based on adaptive migration</title><source>esp@cenet</source><creator>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</creator><creatorcontrib>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</creatorcontrib><description>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503924A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503924A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><title>Lithium battery health state estimation method based on adaptive migration</title><description>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDyySzJyCzNVUhKLClJLapUyEhNzCnJUCguSSxJVUgtLsnMTSzJzM9TyE0tychPASorTk1RAPITUxILSjLLUhVyM9OLwEp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWpgbGlkYmjMTFqAFFjNXM</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>XIAO XU</creator><creator>LYU YI</creator><creator>WEN ZHENFEI</creator><creator>ZHOU NINGXU</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Lithium battery health state estimation method based on adaptive migration</title><author>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503924A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO XU</au><au>LYU YI</au><au>WEN ZHENFEI</au><au>ZHOU NINGXU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lithium battery health state estimation method based on adaptive migration</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118503924A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Lithium battery health state estimation method based on adaptive migration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20XU&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503924A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |