Lithium battery health state estimation method based on adaptive migration

The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIAO XU, LYU YI, WEN ZHENFEI, ZHOU NINGXU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIAO XU
LYU YI
WEN ZHENFEI
ZHOU NINGXU
description The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503924A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503924A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503924A3</originalsourceid><addsrcrecordid>eNrjZPDyySzJyCzNVUhKLClJLapUyEhNzCnJUCguSSxJVUgtLsnMTSzJzM9TyE0tychPASorTk1RAPITUxILSjLLUhVyM9OLwEp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWpgbGlkYmjMTFqAFFjNXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lithium battery health state estimation method based on adaptive migration</title><source>esp@cenet</source><creator>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</creator><creatorcontrib>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</creatorcontrib><description>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503924A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503924A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><title>Lithium battery health state estimation method based on adaptive migration</title><description>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDyySzJyCzNVUhKLClJLapUyEhNzCnJUCguSSxJVUgtLsnMTSzJzM9TyE0tychPASorTk1RAPITUxILSjLLUhVyM9OLwEp4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYWpgbGlkYmjMTFqAFFjNXM</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>XIAO XU</creator><creator>LYU YI</creator><creator>WEN ZHENFEI</creator><creator>ZHOU NINGXU</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Lithium battery health state estimation method based on adaptive migration</title><author>XIAO XU ; LYU YI ; WEN ZHENFEI ; ZHOU NINGXU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503924A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO XU</creatorcontrib><creatorcontrib>LYU YI</creatorcontrib><creatorcontrib>WEN ZHENFEI</creatorcontrib><creatorcontrib>ZHOU NINGXU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO XU</au><au>LYU YI</au><au>WEN ZHENFEI</au><au>ZHOU NINGXU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lithium battery health state estimation method based on adaptive migration</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention discloses a lithium battery health state estimation method based on adaptive migration. The method comprises the following steps: giving a degradation data set of an existing complete battery circulating to failure and partial degradation data of the battery to be predicted online under an unknown working condition; health indexes having high correlation with SOH in a constant voltage charging stage are integrated, and a sliding time window technology and a normalization method are used for preprocessing the integrated data; transform is used as a main body, a plurality of adaptive modules are added to extract advanced degradation characteristics of batteries under different working conditions, and an adaptive fusion strategy of a multi-head attention mechanism is adopted to effectively combine outputs of all the adaptive modules; according to the prediction loss, weighting and integrating the output of all SOH sub-estimators as a final SOH estimated value, and then carrying out optimization tra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118503924A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Lithium battery health state estimation method based on adaptive migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20XU&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503924A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true