Multi-source power failure prediction model construction method and system, terminal and storage medium

The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO JIANWEN, PENG RONGFENG, GU YANG, CHEN YUWEN, LIU ZEHUA, WANG SHENZHENG, WANG YI, FU YUNLONG, LIU GUIBIN, JIAO RUNHAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO JIANWEN
PENG RONGFENG
GU YANG
CHEN YUWEN
LIU ZEHUA
WANG SHENZHENG
WANG YI
FU YUNLONG
LIU GUIBIN
JIAO RUNHAI
description The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503716A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503716A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503716A3</originalsourceid><addsrcrecordid>eNqNissKwjAQAHPxIOo_rHcLluLjKkXxoifvJSTbNpBkw2aD-PcW7Ad4GmaYpRoexYurMhU2CIneyNBr5wtPxmidEUcRAln0YChm4TInlJEs6Gghf7Jg2IEgBxe1_0Uh1gNOn3UlrNWi1z7jZuZKbW_XV3uvMFGHOWmDEaVrn3V9PuybU328NP88XyeFQKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><source>esp@cenet</source><creator>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</creator><creatorcontrib>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</creatorcontrib><description>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503716A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503716A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO JIANWEN</creatorcontrib><creatorcontrib>PENG RONGFENG</creatorcontrib><creatorcontrib>GU YANG</creatorcontrib><creatorcontrib>CHEN YUWEN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>WANG SHENZHENG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>FU YUNLONG</creatorcontrib><creatorcontrib>LIU GUIBIN</creatorcontrib><creatorcontrib>JIAO RUNHAI</creatorcontrib><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><description>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNissKwjAQAHPxIOo_rHcLluLjKkXxoifvJSTbNpBkw2aD-PcW7Ad4GmaYpRoexYurMhU2CIneyNBr5wtPxmidEUcRAln0YChm4TInlJEs6Gghf7Jg2IEgBxe1_0Uh1gNOn3UlrNWi1z7jZuZKbW_XV3uvMFGHOWmDEaVrn3V9PuybU328NP88XyeFQKM</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>ZHAO JIANWEN</creator><creator>PENG RONGFENG</creator><creator>GU YANG</creator><creator>CHEN YUWEN</creator><creator>LIU ZEHUA</creator><creator>WANG SHENZHENG</creator><creator>WANG YI</creator><creator>FU YUNLONG</creator><creator>LIU GUIBIN</creator><creator>JIAO RUNHAI</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><author>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503716A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO JIANWEN</creatorcontrib><creatorcontrib>PENG RONGFENG</creatorcontrib><creatorcontrib>GU YANG</creatorcontrib><creatorcontrib>CHEN YUWEN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>WANG SHENZHENG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>FU YUNLONG</creatorcontrib><creatorcontrib>LIU GUIBIN</creatorcontrib><creatorcontrib>JIAO RUNHAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO JIANWEN</au><au>PENG RONGFENG</au><au>GU YANG</au><au>CHEN YUWEN</au><au>LIU ZEHUA</au><au>WANG SHENZHENG</au><au>WANG YI</au><au>FU YUNLONG</au><au>LIU GUIBIN</au><au>JIAO RUNHAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118503716A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Multi-source power failure prediction model construction method and system, terminal and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20JIANWEN&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503716A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true