Multi-source power failure prediction model construction method and system, terminal and storage medium
The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid op...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHAO JIANWEN PENG RONGFENG GU YANG CHEN YUWEN LIU ZEHUA WANG SHENZHENG WANG YI FU YUNLONG LIU GUIBIN JIAO RUNHAI |
description | The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503716A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503716A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503716A3</originalsourceid><addsrcrecordid>eNqNissKwjAQAHPxIOo_rHcLluLjKkXxoifvJSTbNpBkw2aD-PcW7Ad4GmaYpRoexYurMhU2CIneyNBr5wtPxmidEUcRAln0YChm4TInlJEs6Gghf7Jg2IEgBxe1_0Uh1gNOn3UlrNWi1z7jZuZKbW_XV3uvMFGHOWmDEaVrn3V9PuybU328NP88XyeFQKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><source>esp@cenet</source><creator>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</creator><creatorcontrib>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</creatorcontrib><description>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503716A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503716A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO JIANWEN</creatorcontrib><creatorcontrib>PENG RONGFENG</creatorcontrib><creatorcontrib>GU YANG</creatorcontrib><creatorcontrib>CHEN YUWEN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>WANG SHENZHENG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>FU YUNLONG</creatorcontrib><creatorcontrib>LIU GUIBIN</creatorcontrib><creatorcontrib>JIAO RUNHAI</creatorcontrib><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><description>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNissKwjAQAHPxIOo_rHcLluLjKkXxoifvJSTbNpBkw2aD-PcW7Ad4GmaYpRoexYurMhU2CIneyNBr5wtPxmidEUcRAln0YChm4TInlJEs6Gghf7Jg2IEgBxe1_0Uh1gNOn3UlrNWi1z7jZuZKbW_XV3uvMFGHOWmDEaVrn3V9PuybU328NP88XyeFQKM</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>ZHAO JIANWEN</creator><creator>PENG RONGFENG</creator><creator>GU YANG</creator><creator>CHEN YUWEN</creator><creator>LIU ZEHUA</creator><creator>WANG SHENZHENG</creator><creator>WANG YI</creator><creator>FU YUNLONG</creator><creator>LIU GUIBIN</creator><creator>JIAO RUNHAI</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><author>ZHAO JIANWEN ; PENG RONGFENG ; GU YANG ; CHEN YUWEN ; LIU ZEHUA ; WANG SHENZHENG ; WANG YI ; FU YUNLONG ; LIU GUIBIN ; JIAO RUNHAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503716A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO JIANWEN</creatorcontrib><creatorcontrib>PENG RONGFENG</creatorcontrib><creatorcontrib>GU YANG</creatorcontrib><creatorcontrib>CHEN YUWEN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>WANG SHENZHENG</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>FU YUNLONG</creatorcontrib><creatorcontrib>LIU GUIBIN</creatorcontrib><creatorcontrib>JIAO RUNHAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO JIANWEN</au><au>PENG RONGFENG</au><au>GU YANG</au><au>CHEN YUWEN</au><au>LIU ZEHUA</au><au>WANG SHENZHENG</au><au>WANG YI</au><au>FU YUNLONG</au><au>LIU GUIBIN</au><au>JIAO RUNHAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-source power failure prediction model construction method and system, terminal and storage medium</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention relates to the technical field of machine learning, and particularly provides a multi-source power failure prediction model construction method and system, a terminal and a storage medium, and the method comprises the steps: obtaining transformer area meteorological data, power grid operation data and power failure record data; mining characteristic items having correlation with the power failure record data in the transformer area meteorological data and the power grid operation data, and screening training data from the transformer area meteorological data and the power grid operation data based on the characteristic items; expanding the training data to obtain a data set; a power failure prediction model is constructed, the power failure prediction model comprises a first sub-model and a second sub-model, output parameters of the first sub-model are power grid operation characteristic values, and an input layer of the second sub-model comprises the power grid operation characteristic values a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118503716A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Multi-source power failure prediction model construction method and system, terminal and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20JIANWEN&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503716A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |