Large-scale network public opinion-oriented Elasticsearch retrieval optimization system
The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU JIALIN LIU GUANGCHI LIU ZHE LI HUIKE HE CHENGLONG GU XUEHAI MENG LINGWU DING CAN YIN XIAOYANG |
description | The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503512A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503512A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503512A3</originalsourceid><addsrcrecordid>eNqNzTEKAjEQheFtLES9w3iAgHFZsJVlxUKsBMtljKMOZpOQGRU9vSk8gNUr_g_euDruMF_JiENPEEhfMd8hPU6eHcTEgWMwMTMFpTN0HkXZCWF2N8ikJTzRF6g88Ae1aJC3KA3TanRBLzT77aSab7pDuzWUYk-S0FF569u9tatmUTd2ua7_MV_knTsT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><source>esp@cenet</source><creator>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</creator><creatorcontrib>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</creatorcontrib><description>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503512A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240816&DB=EPODOC&CC=CN&NR=118503512A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIALIN</creatorcontrib><creatorcontrib>LIU GUANGCHI</creatorcontrib><creatorcontrib>LIU ZHE</creatorcontrib><creatorcontrib>LI HUIKE</creatorcontrib><creatorcontrib>HE CHENGLONG</creatorcontrib><creatorcontrib>GU XUEHAI</creatorcontrib><creatorcontrib>MENG LINGWU</creatorcontrib><creatorcontrib>DING CAN</creatorcontrib><creatorcontrib>YIN XIAOYANG</creatorcontrib><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><description>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzTEKAjEQheFtLES9w3iAgHFZsJVlxUKsBMtljKMOZpOQGRU9vSk8gNUr_g_euDruMF_JiENPEEhfMd8hPU6eHcTEgWMwMTMFpTN0HkXZCWF2N8ikJTzRF6g88Ae1aJC3KA3TanRBLzT77aSab7pDuzWUYk-S0FF569u9tatmUTd2ua7_MV_knTsT</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>LIU JIALIN</creator><creator>LIU GUANGCHI</creator><creator>LIU ZHE</creator><creator>LI HUIKE</creator><creator>HE CHENGLONG</creator><creator>GU XUEHAI</creator><creator>MENG LINGWU</creator><creator>DING CAN</creator><creator>YIN XIAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><author>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503512A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIALIN</creatorcontrib><creatorcontrib>LIU GUANGCHI</creatorcontrib><creatorcontrib>LIU ZHE</creatorcontrib><creatorcontrib>LI HUIKE</creatorcontrib><creatorcontrib>HE CHENGLONG</creatorcontrib><creatorcontrib>GU XUEHAI</creatorcontrib><creatorcontrib>MENG LINGWU</creatorcontrib><creatorcontrib>DING CAN</creatorcontrib><creatorcontrib>YIN XIAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIALIN</au><au>LIU GUANGCHI</au><au>LIU ZHE</au><au>LI HUIKE</au><au>HE CHENGLONG</au><au>GU XUEHAI</au><au>MENG LINGWU</au><au>DING CAN</au><au>YIN XIAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118503512A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Large-scale network public opinion-oriented Elasticsearch retrieval optimization system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIALIN&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503512A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |