Large-scale network public opinion-oriented Elasticsearch retrieval optimization system

The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JIALIN, LIU GUANGCHI, LIU ZHE, LI HUIKE, HE CHENGLONG, GU XUEHAI, MENG LINGWU, DING CAN, YIN XIAOYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JIALIN
LIU GUANGCHI
LIU ZHE
LI HUIKE
HE CHENGLONG
GU XUEHAI
MENG LINGWU
DING CAN
YIN XIAOYANG
description The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118503512A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118503512A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118503512A3</originalsourceid><addsrcrecordid>eNqNzTEKAjEQheFtLES9w3iAgHFZsJVlxUKsBMtljKMOZpOQGRU9vSk8gNUr_g_euDruMF_JiENPEEhfMd8hPU6eHcTEgWMwMTMFpTN0HkXZCWF2N8ikJTzRF6g88Ae1aJC3KA3TanRBLzT77aSab7pDuzWUYk-S0FF569u9tatmUTd2ua7_MV_knTsT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><source>esp@cenet</source><creator>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</creator><creatorcontrib>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</creatorcontrib><description>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503512A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240816&amp;DB=EPODOC&amp;CC=CN&amp;NR=118503512A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIALIN</creatorcontrib><creatorcontrib>LIU GUANGCHI</creatorcontrib><creatorcontrib>LIU ZHE</creatorcontrib><creatorcontrib>LI HUIKE</creatorcontrib><creatorcontrib>HE CHENGLONG</creatorcontrib><creatorcontrib>GU XUEHAI</creatorcontrib><creatorcontrib>MENG LINGWU</creatorcontrib><creatorcontrib>DING CAN</creatorcontrib><creatorcontrib>YIN XIAOYANG</creatorcontrib><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><description>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzTEKAjEQheFtLES9w3iAgHFZsJVlxUKsBMtljKMOZpOQGRU9vSk8gNUr_g_euDruMF_JiENPEEhfMd8hPU6eHcTEgWMwMTMFpTN0HkXZCWF2N8ikJTzRF6g88Ae1aJC3KA3TanRBLzT77aSab7pDuzWUYk-S0FF569u9tatmUTd2ua7_MV_knTsT</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>LIU JIALIN</creator><creator>LIU GUANGCHI</creator><creator>LIU ZHE</creator><creator>LI HUIKE</creator><creator>HE CHENGLONG</creator><creator>GU XUEHAI</creator><creator>MENG LINGWU</creator><creator>DING CAN</creator><creator>YIN XIAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20240816</creationdate><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><author>LIU JIALIN ; LIU GUANGCHI ; LIU ZHE ; LI HUIKE ; HE CHENGLONG ; GU XUEHAI ; MENG LINGWU ; DING CAN ; YIN XIAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118503512A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIALIN</creatorcontrib><creatorcontrib>LIU GUANGCHI</creatorcontrib><creatorcontrib>LIU ZHE</creatorcontrib><creatorcontrib>LI HUIKE</creatorcontrib><creatorcontrib>HE CHENGLONG</creatorcontrib><creatorcontrib>GU XUEHAI</creatorcontrib><creatorcontrib>MENG LINGWU</creatorcontrib><creatorcontrib>DING CAN</creatorcontrib><creatorcontrib>YIN XIAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIALIN</au><au>LIU GUANGCHI</au><au>LIU ZHE</au><au>LI HUIKE</au><au>HE CHENGLONG</au><au>GU XUEHAI</au><au>MENG LINGWU</au><au>DING CAN</au><au>YIN XIAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Large-scale network public opinion-oriented Elasticsearch retrieval optimization system</title><date>2024-08-16</date><risdate>2024</risdate><abstract>The invention provides an Elasticsearch retrieval optimization system oriented to large-scale network public opinions. The Elasticsearch retrieval optimization system comprises a data aggregation module, an optimization mechanism and a retrieval service module, wherein the data aggregation module is used for sending intermediate data obtained by preprocessing network public opinion multi-modal data to a distributed message bus Kafka, and finally persistently storing the intermediate data in an Elasticsearch distributed retrieval engine; the optimization mechanism comprises the following steps: constructing a text semantic vector based on a deep learning model SBert for realizing semantic retrieval; converting a text and a picture in the network public opinion multi-modal data into a text vector and a picture vector based on a CLIP multi-modal comparison learning model, wherein the text vector and the picture vector are used for vector retrieval; the retrieval performance of the Elasticsearch distributed retri</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118503512A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Large-scale network public opinion-oriented Elasticsearch retrieval optimization system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIALIN&rft.date=2024-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118503512A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true