Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification
The invention discloses a hyperspectral remote sensing image deep learning classification threshold estimation sample enhancement method, and the method comprises the steps: obtaining hyperspectral remote sensing image public data, and selecting a plurality of samples according to each type to form...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG PENGFEI LYU ZHIYONG HU SIYUE ZHAO JUN |
description | The invention discloses a hyperspectral remote sensing image deep learning classification threshold estimation sample enhancement method, and the method comprises the steps: obtaining hyperspectral remote sensing image public data, and selecting a plurality of samples according to each type to form an initial training sample set; training the initial training sample set by using a twin network as a classifier, and predicting the hyperspectrum pixel by pixel to obtain a prediction result presented by a classification probability matrix; inputting the classification probability matrix into a threshold estimation module to adaptively estimate each type of threshold, and selecting samples with prediction probabilities higher than the corresponding type of threshold in the classification probability matrix as pseudo samples to obtain a pseudo sample set; and detecting and correcting the pseudo sample set to obtain a corrected pseudo sample set, putting the corrected pseudo sample set into the initial training samp |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118470469A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118470469A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118470469A3</originalsourceid><addsrcrecordid>eNqNjM0KwjAQBnvxIOo7rA8gWCxaj1IUT556L0v6tQkkm5DNxbf3Bx_A08AwzLLKvc1QG_1I0OICFxeFlEPyIIhlMQiQQgHFxpGmmMk-E7ImmJLZU0aIBaQQdTLTezGDRiCRB2f5OONZ1U3OfO_rajGxV2x-XFXb27Xv7jukOEATGwjK0D3qum1O--Z4vhz-aV6s8UVp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification</title><source>esp@cenet</source><creator>ZHANG PENGFEI ; LYU ZHIYONG ; HU SIYUE ; ZHAO JUN</creator><creatorcontrib>ZHANG PENGFEI ; LYU ZHIYONG ; HU SIYUE ; ZHAO JUN</creatorcontrib><description>The invention discloses a hyperspectral remote sensing image deep learning classification threshold estimation sample enhancement method, and the method comprises the steps: obtaining hyperspectral remote sensing image public data, and selecting a plurality of samples according to each type to form an initial training sample set; training the initial training sample set by using a twin network as a classifier, and predicting the hyperspectrum pixel by pixel to obtain a prediction result presented by a classification probability matrix; inputting the classification probability matrix into a threshold estimation module to adaptively estimate each type of threshold, and selecting samples with prediction probabilities higher than the corresponding type of threshold in the classification probability matrix as pseudo samples to obtain a pseudo sample set; and detecting and correcting the pseudo sample set to obtain a corrected pseudo sample set, putting the corrected pseudo sample set into the initial training samp</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118470469A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118470469A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>LYU ZHIYONG</creatorcontrib><creatorcontrib>HU SIYUE</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><title>Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification</title><description>The invention discloses a hyperspectral remote sensing image deep learning classification threshold estimation sample enhancement method, and the method comprises the steps: obtaining hyperspectral remote sensing image public data, and selecting a plurality of samples according to each type to form an initial training sample set; training the initial training sample set by using a twin network as a classifier, and predicting the hyperspectrum pixel by pixel to obtain a prediction result presented by a classification probability matrix; inputting the classification probability matrix into a threshold estimation module to adaptively estimate each type of threshold, and selecting samples with prediction probabilities higher than the corresponding type of threshold in the classification probability matrix as pseudo samples to obtain a pseudo sample set; and detecting and correcting the pseudo sample set to obtain a corrected pseudo sample set, putting the corrected pseudo sample set into the initial training samp</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjM0KwjAQBnvxIOo7rA8gWCxaj1IUT556L0v6tQkkm5DNxbf3Bx_A08AwzLLKvc1QG_1I0OICFxeFlEPyIIhlMQiQQgHFxpGmmMk-E7ImmJLZU0aIBaQQdTLTezGDRiCRB2f5OONZ1U3OfO_rajGxV2x-XFXb27Xv7jukOEATGwjK0D3qum1O--Z4vhz-aV6s8UVp</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>ZHANG PENGFEI</creator><creator>LYU ZHIYONG</creator><creator>HU SIYUE</creator><creator>ZHAO JUN</creator><scope>EVB</scope></search><sort><creationdate>20240809</creationdate><title>Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification</title><author>ZHANG PENGFEI ; LYU ZHIYONG ; HU SIYUE ; ZHAO JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118470469A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG PENGFEI</creatorcontrib><creatorcontrib>LYU ZHIYONG</creatorcontrib><creatorcontrib>HU SIYUE</creatorcontrib><creatorcontrib>ZHAO JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG PENGFEI</au><au>LYU ZHIYONG</au><au>HU SIYUE</au><au>ZHAO JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification</title><date>2024-08-09</date><risdate>2024</risdate><abstract>The invention discloses a hyperspectral remote sensing image deep learning classification threshold estimation sample enhancement method, and the method comprises the steps: obtaining hyperspectral remote sensing image public data, and selecting a plurality of samples according to each type to form an initial training sample set; training the initial training sample set by using a twin network as a classifier, and predicting the hyperspectrum pixel by pixel to obtain a prediction result presented by a classification probability matrix; inputting the classification probability matrix into a threshold estimation module to adaptively estimate each type of threshold, and selecting samples with prediction probabilities higher than the corresponding type of threshold in the classification probability matrix as pseudo samples to obtain a pseudo sample set; and detecting and correcting the pseudo sample set to obtain a corrected pseudo sample set, putting the corrected pseudo sample set into the initial training samp</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118470469A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Threshold estimation sample enhancement method for hyperspectral remote sensing image deep learning classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20PENGFEI&rft.date=2024-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118470469A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |