Wind power data anomaly detection method and system based on federated learning mechanism

The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAI QIANGSHENG, FENG YING, GONG ZAIGANG, DU YUNLONG, KONG BOJUN, XUE CHEN, ZHOU XINGCHEN, CHEN SIYU, XUE ZHONGBING, HUO XUESONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAI QIANGSHENG
FENG YING
GONG ZAIGANG
DU YUNLONG
KONG BOJUN
XUE CHEN
ZHOU XINGCHEN
CHEN SIYU
XUE ZHONGBING
HUO XUESONG
description The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118468186A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118468186A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118468186A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QAWQQlpJUSsrASxCmPmxyxkZ5fsgOT2buEBrB6P99bF8-FUKIYPZhI2JtbgeVpIYOjNBSUPG4PkIJSWZPD04gShnAYIZrYsE3hWp-989yOrS35brAaeEnY_bor9pb031wNi6JAi91BY19zKsj5VdVlX5-M_zxfa5Dq9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><source>esp@cenet</source><creator>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</creator><creatorcontrib>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</creatorcontrib><description>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240809&amp;DB=EPODOC&amp;CC=CN&amp;NR=118468186A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240809&amp;DB=EPODOC&amp;CC=CN&amp;NR=118468186A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI QIANGSHENG</creatorcontrib><creatorcontrib>FENG YING</creatorcontrib><creatorcontrib>GONG ZAIGANG</creatorcontrib><creatorcontrib>DU YUNLONG</creatorcontrib><creatorcontrib>KONG BOJUN</creatorcontrib><creatorcontrib>XUE CHEN</creatorcontrib><creatorcontrib>ZHOU XINGCHEN</creatorcontrib><creatorcontrib>CHEN SIYU</creatorcontrib><creatorcontrib>XUE ZHONGBING</creatorcontrib><creatorcontrib>HUO XUESONG</creatorcontrib><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><description>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QAWQQlpJUSsrASxCmPmxyxkZ5fsgOT2buEBrB6P99bF8-FUKIYPZhI2JtbgeVpIYOjNBSUPG4PkIJSWZPD04gShnAYIZrYsE3hWp-989yOrS35brAaeEnY_bor9pb031wNi6JAi91BY19zKsj5VdVlX5-M_zxfa5Dq9</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>DAI QIANGSHENG</creator><creator>FENG YING</creator><creator>GONG ZAIGANG</creator><creator>DU YUNLONG</creator><creator>KONG BOJUN</creator><creator>XUE CHEN</creator><creator>ZHOU XINGCHEN</creator><creator>CHEN SIYU</creator><creator>XUE ZHONGBING</creator><creator>HUO XUESONG</creator><scope>EVB</scope></search><sort><creationdate>20240809</creationdate><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><author>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118468186A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI QIANGSHENG</creatorcontrib><creatorcontrib>FENG YING</creatorcontrib><creatorcontrib>GONG ZAIGANG</creatorcontrib><creatorcontrib>DU YUNLONG</creatorcontrib><creatorcontrib>KONG BOJUN</creatorcontrib><creatorcontrib>XUE CHEN</creatorcontrib><creatorcontrib>ZHOU XINGCHEN</creatorcontrib><creatorcontrib>CHEN SIYU</creatorcontrib><creatorcontrib>XUE ZHONGBING</creatorcontrib><creatorcontrib>HUO XUESONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI QIANGSHENG</au><au>FENG YING</au><au>GONG ZAIGANG</au><au>DU YUNLONG</au><au>KONG BOJUN</au><au>XUE CHEN</au><au>ZHOU XINGCHEN</au><au>CHEN SIYU</au><au>XUE ZHONGBING</au><au>HUO XUESONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><date>2024-08-09</date><risdate>2024</risdate><abstract>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118468186A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Wind power data anomaly detection method and system based on federated learning mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20QIANGSHENG&rft.date=2024-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118468186A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true