Wind power data anomaly detection method and system based on federated learning mechanism
The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature genera...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DAI QIANGSHENG FENG YING GONG ZAIGANG DU YUNLONG KONG BOJUN XUE CHEN ZHOU XINGCHEN CHEN SIYU XUE ZHONGBING HUO XUESONG |
description | The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118468186A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118468186A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118468186A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QAWQQlpJUSsrASxCmPmxyxkZ5fsgOT2buEBrB6P99bF8-FUKIYPZhI2JtbgeVpIYOjNBSUPG4PkIJSWZPD04gShnAYIZrYsE3hWp-989yOrS35brAaeEnY_bor9pb031wNi6JAi91BY19zKsj5VdVlX5-M_zxfa5Dq9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><source>esp@cenet</source><creator>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</creator><creatorcontrib>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</creatorcontrib><description>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118468186A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118468186A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI QIANGSHENG</creatorcontrib><creatorcontrib>FENG YING</creatorcontrib><creatorcontrib>GONG ZAIGANG</creatorcontrib><creatorcontrib>DU YUNLONG</creatorcontrib><creatorcontrib>KONG BOJUN</creatorcontrib><creatorcontrib>XUE CHEN</creatorcontrib><creatorcontrib>ZHOU XINGCHEN</creatorcontrib><creatorcontrib>CHEN SIYU</creatorcontrib><creatorcontrib>XUE ZHONGBING</creatorcontrib><creatorcontrib>HUO XUESONG</creatorcontrib><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><description>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QAWQQlpJUSsrASxCmPmxyxkZ5fsgOT2buEBrB6P99bF8-FUKIYPZhI2JtbgeVpIYOjNBSUPG4PkIJSWZPD04gShnAYIZrYsE3hWp-989yOrS35brAaeEnY_bor9pb031wNi6JAi91BY19zKsj5VdVlX5-M_zxfa5Dq9</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>DAI QIANGSHENG</creator><creator>FENG YING</creator><creator>GONG ZAIGANG</creator><creator>DU YUNLONG</creator><creator>KONG BOJUN</creator><creator>XUE CHEN</creator><creator>ZHOU XINGCHEN</creator><creator>CHEN SIYU</creator><creator>XUE ZHONGBING</creator><creator>HUO XUESONG</creator><scope>EVB</scope></search><sort><creationdate>20240809</creationdate><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><author>DAI QIANGSHENG ; FENG YING ; GONG ZAIGANG ; DU YUNLONG ; KONG BOJUN ; XUE CHEN ; ZHOU XINGCHEN ; CHEN SIYU ; XUE ZHONGBING ; HUO XUESONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118468186A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI QIANGSHENG</creatorcontrib><creatorcontrib>FENG YING</creatorcontrib><creatorcontrib>GONG ZAIGANG</creatorcontrib><creatorcontrib>DU YUNLONG</creatorcontrib><creatorcontrib>KONG BOJUN</creatorcontrib><creatorcontrib>XUE CHEN</creatorcontrib><creatorcontrib>ZHOU XINGCHEN</creatorcontrib><creatorcontrib>CHEN SIYU</creatorcontrib><creatorcontrib>XUE ZHONGBING</creatorcontrib><creatorcontrib>HUO XUESONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI QIANGSHENG</au><au>FENG YING</au><au>GONG ZAIGANG</au><au>DU YUNLONG</au><au>KONG BOJUN</au><au>XUE CHEN</au><au>ZHOU XINGCHEN</au><au>CHEN SIYU</au><au>XUE ZHONGBING</au><au>HUO XUESONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wind power data anomaly detection method and system based on federated learning mechanism</title><date>2024-08-09</date><risdate>2024</risdate><abstract>The invention relates to the field of anomaly detection, and provides a wind power data anomaly detection method and system based on a federated learning mechanism. The method comprises the following steps: generating a guide node based on a federal multi-scale graph contrast learning feature generation model; selecting a neighbor node set to be aggregated; obtaining a high-value information relation subgraph of the target node; aggregating information of neighbor nodes under each relationship in the high-value information relationship sub-graph by using a GNN based on a message passing mechanism; after neighbor information aggregation is completed locally, a multi-layer perceptron is used as a classifier to predict the anomaly of data; calculating classification loss, and forming a local model through loss training; and performing iteration on the global model by using a local model weighted average mode to obtain a federated wind power data anomaly detection model, and performing real-time detection on the</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118468186A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Wind power data anomaly detection method and system based on federated learning mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20QIANGSHENG&rft.date=2024-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118468186A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |