Electric power area meteorological disaster prediction method and system based on convolution algorithm
The invention discloses a power region meteorological disaster prediction method and system based on a convolution algorithm, and relates to the technical field of meteorological prediction, and the method comprises the steps: determining meteorological data in a meteorological station intersection...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HUANG XIN LI SHENGSHENG WU MINGGUANG JIN ZIYAN ZHA MENG CAO YUANLONG YU SHI |
description | The invention discloses a power region meteorological disaster prediction method and system based on a convolution algorithm, and relates to the technical field of meteorological prediction, and the method comprises the steps: determining meteorological data in a meteorological station intersection region and an unknown region; dividing the power region into a plurality of sub-region graphs according to the geographic features of the power region graph, calculating the complexity level of meteorological data in the sub-region graphs, classifying the sub-region graphs according to the complexity level, and endowing each type of sub-region graphs with a target grid size; determining the influence attribute of each meteorological disaster to establish a meteorological disaster grade evaluation standard; configuring model structure parameters through meteorological disaster grades, and training a convolutional LSTM model; and predicting meteorological disasters by using the electric power region meteorological di |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118465875A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118465875A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118465875A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzkAQwWFrlVVxMTEXpnEpJGcOEoCiNsTEAdg-sP788oMTCpHqyDIkyJgJARHmSQKi7EKGbRNmHLBEElbla34zzKJBvQa0quggysm0lBIiX8I378bspFo8-SW1eyGnGj166JaH4dLf9pQkJFSQEWe8tif67rd7Zv20HTbf543NIlA-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric power area meteorological disaster prediction method and system based on convolution algorithm</title><source>esp@cenet</source><creator>HUANG XIN ; LI SHENGSHENG ; WU MINGGUANG ; JIN ZIYAN ; ZHA MENG ; CAO YUANLONG ; YU SHI</creator><creatorcontrib>HUANG XIN ; LI SHENGSHENG ; WU MINGGUANG ; JIN ZIYAN ; ZHA MENG ; CAO YUANLONG ; YU SHI</creatorcontrib><description>The invention discloses a power region meteorological disaster prediction method and system based on a convolution algorithm, and relates to the technical field of meteorological prediction, and the method comprises the steps: determining meteorological data in a meteorological station intersection region and an unknown region; dividing the power region into a plurality of sub-region graphs according to the geographic features of the power region graph, calculating the complexity level of meteorological data in the sub-region graphs, classifying the sub-region graphs according to the complexity level, and endowing each type of sub-region graphs with a target grid size; determining the influence attribute of each meteorological disaster to establish a meteorological disaster grade evaluation standard; configuring model structure parameters through meteorological disaster grades, and training a convolutional LSTM model; and predicting meteorological disasters by using the electric power region meteorological di</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASURING ; METEOROLOGY ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118465875A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240809&DB=EPODOC&CC=CN&NR=118465875A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>LI SHENGSHENG</creatorcontrib><creatorcontrib>WU MINGGUANG</creatorcontrib><creatorcontrib>JIN ZIYAN</creatorcontrib><creatorcontrib>ZHA MENG</creatorcontrib><creatorcontrib>CAO YUANLONG</creatorcontrib><creatorcontrib>YU SHI</creatorcontrib><title>Electric power area meteorological disaster prediction method and system based on convolution algorithm</title><description>The invention discloses a power region meteorological disaster prediction method and system based on a convolution algorithm, and relates to the technical field of meteorological prediction, and the method comprises the steps: determining meteorological data in a meteorological station intersection region and an unknown region; dividing the power region into a plurality of sub-region graphs according to the geographic features of the power region graph, calculating the complexity level of meteorological data in the sub-region graphs, classifying the sub-region graphs according to the complexity level, and endowing each type of sub-region graphs with a target grid size; determining the influence attribute of each meteorological disaster to establish a meteorological disaster grade evaluation standard; configuring model structure parameters through meteorological disaster grades, and training a convolutional LSTM model; and predicting meteorological disasters by using the electric power region meteorological di</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>METEOROLOGY</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzkAQwWFrlVVxMTEXpnEpJGcOEoCiNsTEAdg-sP788oMTCpHqyDIkyJgJARHmSQKi7EKGbRNmHLBEElbla34zzKJBvQa0quggysm0lBIiX8I378bspFo8-SW1eyGnGj166JaH4dLf9pQkJFSQEWe8tif67rd7Zv20HTbf543NIlA-w</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>HUANG XIN</creator><creator>LI SHENGSHENG</creator><creator>WU MINGGUANG</creator><creator>JIN ZIYAN</creator><creator>ZHA MENG</creator><creator>CAO YUANLONG</creator><creator>YU SHI</creator><scope>EVB</scope></search><sort><creationdate>20240809</creationdate><title>Electric power area meteorological disaster prediction method and system based on convolution algorithm</title><author>HUANG XIN ; LI SHENGSHENG ; WU MINGGUANG ; JIN ZIYAN ; ZHA MENG ; CAO YUANLONG ; YU SHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118465875A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>METEOROLOGY</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG XIN</creatorcontrib><creatorcontrib>LI SHENGSHENG</creatorcontrib><creatorcontrib>WU MINGGUANG</creatorcontrib><creatorcontrib>JIN ZIYAN</creatorcontrib><creatorcontrib>ZHA MENG</creatorcontrib><creatorcontrib>CAO YUANLONG</creatorcontrib><creatorcontrib>YU SHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG XIN</au><au>LI SHENGSHENG</au><au>WU MINGGUANG</au><au>JIN ZIYAN</au><au>ZHA MENG</au><au>CAO YUANLONG</au><au>YU SHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric power area meteorological disaster prediction method and system based on convolution algorithm</title><date>2024-08-09</date><risdate>2024</risdate><abstract>The invention discloses a power region meteorological disaster prediction method and system based on a convolution algorithm, and relates to the technical field of meteorological prediction, and the method comprises the steps: determining meteorological data in a meteorological station intersection region and an unknown region; dividing the power region into a plurality of sub-region graphs according to the geographic features of the power region graph, calculating the complexity level of meteorological data in the sub-region graphs, classifying the sub-region graphs according to the complexity level, and endowing each type of sub-region graphs with a target grid size; determining the influence attribute of each meteorological disaster to establish a meteorological disaster grade evaluation standard; configuring model structure parameters through meteorological disaster grades, and training a convolutional LSTM model; and predicting meteorological disasters by using the electric power region meteorological di</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118465875A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MEASURING METEOROLOGY PHYSICS TESTING |
title | Electric power area meteorological disaster prediction method and system based on convolution algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20XIN&rft.date=2024-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118465875A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |