Two-stage deep neural network image restoration method based on super-resolution technology

The invention discloses a two-stage deep neural network image restoration method based on a super-resolution technology, and relates to the technical field of image restoration. The two-stage deep neural network image restoration method based on the super-resolution technology comprises the followin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI PENG, BI XUEHUI, LIU HUAMING, YUE HEFEI, LI ZHENJIE, WANG SHIZHENG, WANG XIUYOU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI PENG
BI XUEHUI
LIU HUAMING
YUE HEFEI
LI ZHENJIE
WANG SHIZHENG
WANG XIUYOU
description The invention discloses a two-stage deep neural network image restoration method based on a super-resolution technology, and relates to the technical field of image restoration. The two-stage deep neural network image restoration method based on the super-resolution technology comprises the following steps: acquiring a damaged image; the damaged image is repaired based on the constructed image repairing network, the image repairing network comprises a rough repairing network and a refined repairing network, the rough repairing network is used for preliminarily repairing the damaged image to obtain a preliminarily repaired image, and the refined repairing network is used for finely repairing the preliminarily repaired image to obtain a refined repaired image; according to the invention, the problem of how to recover high-resolution information from a low-resolution image is solved. 本发明公开了一种基于超分辨率技术的双阶段深度神经网络图像修复方法,涉及图像修复技术领域。该基于超分辨率技术的双阶段深度神经网络图像修复方法,包括以下步骤:获取受损图像;基于构建的图像修复网络对受损图像进行修复,所述图像修复网络包括粗略修复网络和精细化修复网络,
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118446937A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118446937A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118446937A3</originalsourceid><addsrcrecordid>eNrjZIgOKc_XLS5JTE9VSElNLVDISy0tSswBUiXl-UXZCpm5IJmi1OKS_KLEksz8PIXc1JKM_BSFpMTi1BQFIL-4tCC1SBeoIj-nFKygJDU5Iy8_Jz-9koeBNS0xpziVF0pzMyi6uYY4e-imFuTHpxYXJCanAu2Jd_YzNLQwMTGzNDZ3NCZGDQC-QjxI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Two-stage deep neural network image restoration method based on super-resolution technology</title><source>esp@cenet</source><creator>LI PENG ; BI XUEHUI ; LIU HUAMING ; YUE HEFEI ; LI ZHENJIE ; WANG SHIZHENG ; WANG XIUYOU</creator><creatorcontrib>LI PENG ; BI XUEHUI ; LIU HUAMING ; YUE HEFEI ; LI ZHENJIE ; WANG SHIZHENG ; WANG XIUYOU</creatorcontrib><description>The invention discloses a two-stage deep neural network image restoration method based on a super-resolution technology, and relates to the technical field of image restoration. The two-stage deep neural network image restoration method based on the super-resolution technology comprises the following steps: acquiring a damaged image; the damaged image is repaired based on the constructed image repairing network, the image repairing network comprises a rough repairing network and a refined repairing network, the rough repairing network is used for preliminarily repairing the damaged image to obtain a preliminarily repaired image, and the refined repairing network is used for finely repairing the preliminarily repaired image to obtain a refined repaired image; according to the invention, the problem of how to recover high-resolution information from a low-resolution image is solved. 本发明公开了一种基于超分辨率技术的双阶段深度神经网络图像修复方法,涉及图像修复技术领域。该基于超分辨率技术的双阶段深度神经网络图像修复方法,包括以下步骤:获取受损图像;基于构建的图像修复网络对受损图像进行修复,所述图像修复网络包括粗略修复网络和精细化修复网络,</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118446937A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118446937A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>BI XUEHUI</creatorcontrib><creatorcontrib>LIU HUAMING</creatorcontrib><creatorcontrib>YUE HEFEI</creatorcontrib><creatorcontrib>LI ZHENJIE</creatorcontrib><creatorcontrib>WANG SHIZHENG</creatorcontrib><creatorcontrib>WANG XIUYOU</creatorcontrib><title>Two-stage deep neural network image restoration method based on super-resolution technology</title><description>The invention discloses a two-stage deep neural network image restoration method based on a super-resolution technology, and relates to the technical field of image restoration. The two-stage deep neural network image restoration method based on the super-resolution technology comprises the following steps: acquiring a damaged image; the damaged image is repaired based on the constructed image repairing network, the image repairing network comprises a rough repairing network and a refined repairing network, the rough repairing network is used for preliminarily repairing the damaged image to obtain a preliminarily repaired image, and the refined repairing network is used for finely repairing the preliminarily repaired image to obtain a refined repaired image; according to the invention, the problem of how to recover high-resolution information from a low-resolution image is solved. 本发明公开了一种基于超分辨率技术的双阶段深度神经网络图像修复方法,涉及图像修复技术领域。该基于超分辨率技术的双阶段深度神经网络图像修复方法,包括以下步骤:获取受损图像;基于构建的图像修复网络对受损图像进行修复,所述图像修复网络包括粗略修复网络和精细化修复网络,</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgOKc_XLS5JTE9VSElNLVDISy0tSswBUiXl-UXZCpm5IJmi1OKS_KLEksz8PIXc1JKM_BSFpMTi1BQFIL-4tCC1SBeoIj-nFKygJDU5Iy8_Jz-9koeBNS0xpziVF0pzMyi6uYY4e-imFuTHpxYXJCanAu2Jd_YzNLQwMTGzNDZ3NCZGDQC-QjxI</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>LI PENG</creator><creator>BI XUEHUI</creator><creator>LIU HUAMING</creator><creator>YUE HEFEI</creator><creator>LI ZHENJIE</creator><creator>WANG SHIZHENG</creator><creator>WANG XIUYOU</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Two-stage deep neural network image restoration method based on super-resolution technology</title><author>LI PENG ; BI XUEHUI ; LIU HUAMING ; YUE HEFEI ; LI ZHENJIE ; WANG SHIZHENG ; WANG XIUYOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118446937A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>BI XUEHUI</creatorcontrib><creatorcontrib>LIU HUAMING</creatorcontrib><creatorcontrib>YUE HEFEI</creatorcontrib><creatorcontrib>LI ZHENJIE</creatorcontrib><creatorcontrib>WANG SHIZHENG</creatorcontrib><creatorcontrib>WANG XIUYOU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENG</au><au>BI XUEHUI</au><au>LIU HUAMING</au><au>YUE HEFEI</au><au>LI ZHENJIE</au><au>WANG SHIZHENG</au><au>WANG XIUYOU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Two-stage deep neural network image restoration method based on super-resolution technology</title><date>2024-08-06</date><risdate>2024</risdate><abstract>The invention discloses a two-stage deep neural network image restoration method based on a super-resolution technology, and relates to the technical field of image restoration. The two-stage deep neural network image restoration method based on the super-resolution technology comprises the following steps: acquiring a damaged image; the damaged image is repaired based on the constructed image repairing network, the image repairing network comprises a rough repairing network and a refined repairing network, the rough repairing network is used for preliminarily repairing the damaged image to obtain a preliminarily repaired image, and the refined repairing network is used for finely repairing the preliminarily repaired image to obtain a refined repaired image; according to the invention, the problem of how to recover high-resolution information from a low-resolution image is solved. 本发明公开了一种基于超分辨率技术的双阶段深度神经网络图像修复方法,涉及图像修复技术领域。该基于超分辨率技术的双阶段深度神经网络图像修复方法,包括以下步骤:获取受损图像;基于构建的图像修复网络对受损图像进行修复,所述图像修复网络包括粗略修复网络和精细化修复网络,</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118446937A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Two-stage deep neural network image restoration method based on super-resolution technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENG&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118446937A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true