Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU

The invention discloses a solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU, and belongs to the field of deep learning prediction. The method comprises the steps of obtaining historical solar irradiance data and other meteorological data, and performing data preprocessing on time se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG JIAN, LIU HUIYUAN, SHAN JIESHAN, YU LONG, CAI ZILONG, WANG KAIZHENG, LI HAO, GAO SHIBIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG JIAN
LIU HUIYUAN
SHAN JIESHAN
YU LONG
CAI ZILONG
WANG KAIZHENG
LI HAO
GAO SHIBIN
description The invention discloses a solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU, and belongs to the field of deep learning prediction. The method comprises the steps of obtaining historical solar irradiance data and other meteorological data, and performing data preprocessing on time series data; according to the method, a two-channel feature extraction network is constructed, pre-processed feature data are respectively sent to different feature extraction networks, the feature data are extracted through the different feature extraction networks, then superposition is carried out, and the feature data can be extracted into deeper-level features; a channel attention network is constructed, different weights are distributed, and important features are highlighted; constructing a GRU network, and extracting time correlation of multi-sequence time sequence data; and constructing a feature output network, inputting a feature vector obtained from the GRU network into a full connection layer, and obtain
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118445568A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118445568A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118445568A3</originalsourceid><addsrcrecordid>eNrjZHAKzs9JLFLILCpKTMlMzEtOVSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDyQ5z9dEOCHP2CdR1DQlz9PP39dN2DQnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhhYmJqamZhaMxMWoAZYMv4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU</title><source>esp@cenet</source><creator>WANG JIAN ; LIU HUIYUAN ; SHAN JIESHAN ; YU LONG ; CAI ZILONG ; WANG KAIZHENG ; LI HAO ; GAO SHIBIN</creator><creatorcontrib>WANG JIAN ; LIU HUIYUAN ; SHAN JIESHAN ; YU LONG ; CAI ZILONG ; WANG KAIZHENG ; LI HAO ; GAO SHIBIN</creatorcontrib><description>The invention discloses a solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU, and belongs to the field of deep learning prediction. The method comprises the steps of obtaining historical solar irradiance data and other meteorological data, and performing data preprocessing on time series data; according to the method, a two-channel feature extraction network is constructed, pre-processed feature data are respectively sent to different feature extraction networks, the feature data are extracted through the different feature extraction networks, then superposition is carried out, and the feature data can be extracted into deeper-level features; a channel attention network is constructed, different weights are distributed, and important features are highlighted; constructing a GRU network, and extracting time correlation of multi-sequence time sequence data; and constructing a feature output network, inputting a feature vector obtained from the GRU network into a full connection layer, and obtain</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118445568A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118445568A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG JIAN</creatorcontrib><creatorcontrib>LIU HUIYUAN</creatorcontrib><creatorcontrib>SHAN JIESHAN</creatorcontrib><creatorcontrib>YU LONG</creatorcontrib><creatorcontrib>CAI ZILONG</creatorcontrib><creatorcontrib>WANG KAIZHENG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>GAO SHIBIN</creatorcontrib><title>Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU</title><description>The invention discloses a solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU, and belongs to the field of deep learning prediction. The method comprises the steps of obtaining historical solar irradiance data and other meteorological data, and performing data preprocessing on time series data; according to the method, a two-channel feature extraction network is constructed, pre-processed feature data are respectively sent to different feature extraction networks, the feature data are extracted through the different feature extraction networks, then superposition is carried out, and the feature data can be extracted into deeper-level features; a channel attention network is constructed, different weights are distributed, and important features are highlighted; constructing a GRU network, and extracting time correlation of multi-sequence time sequence data; and constructing a feature output network, inputting a feature vector obtained from the GRU network into a full connection layer, and obtain</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAKzs9JLFLILCpKTMlMzEtOVSgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDyQ5z9dEOCHP2CdR1DQlz9PP39dN2DQnkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhhYmJqamZhaMxMWoAZYMv4g</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>WANG JIAN</creator><creator>LIU HUIYUAN</creator><creator>SHAN JIESHAN</creator><creator>YU LONG</creator><creator>CAI ZILONG</creator><creator>WANG KAIZHENG</creator><creator>LI HAO</creator><creator>GAO SHIBIN</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU</title><author>WANG JIAN ; LIU HUIYUAN ; SHAN JIESHAN ; YU LONG ; CAI ZILONG ; WANG KAIZHENG ; LI HAO ; GAO SHIBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118445568A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG JIAN</creatorcontrib><creatorcontrib>LIU HUIYUAN</creatorcontrib><creatorcontrib>SHAN JIESHAN</creatorcontrib><creatorcontrib>YU LONG</creatorcontrib><creatorcontrib>CAI ZILONG</creatorcontrib><creatorcontrib>WANG KAIZHENG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>GAO SHIBIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG JIAN</au><au>LIU HUIYUAN</au><au>SHAN JIESHAN</au><au>YU LONG</au><au>CAI ZILONG</au><au>WANG KAIZHENG</au><au>LI HAO</au><au>GAO SHIBIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU</title><date>2024-08-06</date><risdate>2024</risdate><abstract>The invention discloses a solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU, and belongs to the field of deep learning prediction. The method comprises the steps of obtaining historical solar irradiance data and other meteorological data, and performing data preprocessing on time series data; according to the method, a two-channel feature extraction network is constructed, pre-processed feature data are respectively sent to different feature extraction networks, the feature data are extracted through the different feature extraction networks, then superposition is carried out, and the feature data can be extracted into deeper-level features; a channel attention network is constructed, different weights are distributed, and important features are highlighted; constructing a GRU network, and extracting time correlation of multi-sequence time sequence data; and constructing a feature output network, inputting a feature vector obtained from the GRU network into a full connection layer, and obtain</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118445568A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Solar irradiance prediction method based on TCN-TRANS-ATTENION-GRU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20JIAN&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118445568A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true