Enhanced cross-domain sequential recommendation method combining large language model and comparative learning

The invention discloses an enhanced cross-domain sequence recommendation method combining a large language model and comparative learning, which belongs to the field of cross-domain sequence recommendation, and comprises the steps of fusing the large language model, finely adjusting a fusion proport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JU JINGXIN, LIN TIANYU, FANG TAO, ZHOU CHAO, LOU HANGYU, DU SHUYING, ZANG QIAN, GONG JIBING, YE TIANXIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JU JINGXIN
LIN TIANYU
FANG TAO
ZHOU CHAO
LOU HANGYU
DU SHUYING
ZANG QIAN
GONG JIBING
YE TIANXIANG
description The invention discloses an enhanced cross-domain sequence recommendation method combining a large language model and comparative learning, which belongs to the field of cross-domain sequence recommendation, and comprises the steps of fusing the large language model, finely adjusting a fusion proportion, decoupling long and short features of a sequence, respectively fusing long-term features and short-term features of different domains, and obtaining long-term interests and short-term interests. And fusing the long-term interests and the short-term interests of different domains after fusion to predict a next item. According to the method, effective fusion of long-term interests and short-term interests is realized, so that the accuracy of cross-domain sequential recommendation is remarkably improved. The accuracy of cross-domain sequence recommendation is improved to a certain extent, and a new view angle and a new technical path are provided for research and practice of a recommendation system. 本发明公开了一种结合大语言
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118445477A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118445477A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118445477A3</originalsourceid><addsrcrecordid>eNqNyzEOwjAQBMA0FAj4g3lAioig0EZREBUVfXTYS2LJvgu2w_sxiAfQ3K60c-uCe56INYzSQWIsjXiyrCKeCzhZcipAi_dgQ8kKK480Sdbi75Ytj8pRGJEvjwvl4sXAKeIvmSnkr1eeQeGjt8XqQS5i98tNsT_3t-5SYpYBcSYNRhq6a1Wd6vpYN017-Me8ATRrQ3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Enhanced cross-domain sequential recommendation method combining large language model and comparative learning</title><source>esp@cenet</source><creator>JU JINGXIN ; LIN TIANYU ; FANG TAO ; ZHOU CHAO ; LOU HANGYU ; DU SHUYING ; ZANG QIAN ; GONG JIBING ; YE TIANXIANG</creator><creatorcontrib>JU JINGXIN ; LIN TIANYU ; FANG TAO ; ZHOU CHAO ; LOU HANGYU ; DU SHUYING ; ZANG QIAN ; GONG JIBING ; YE TIANXIANG</creatorcontrib><description>The invention discloses an enhanced cross-domain sequence recommendation method combining a large language model and comparative learning, which belongs to the field of cross-domain sequence recommendation, and comprises the steps of fusing the large language model, finely adjusting a fusion proportion, decoupling long and short features of a sequence, respectively fusing long-term features and short-term features of different domains, and obtaining long-term interests and short-term interests. And fusing the long-term interests and the short-term interests of different domains after fusion to predict a next item. According to the method, effective fusion of long-term interests and short-term interests is realized, so that the accuracy of cross-domain sequential recommendation is remarkably improved. The accuracy of cross-domain sequence recommendation is improved to a certain extent, and a new view angle and a new technical path are provided for research and practice of a recommendation system. 本发明公开了一种结合大语言</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118445477A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=CN&amp;NR=118445477A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JU JINGXIN</creatorcontrib><creatorcontrib>LIN TIANYU</creatorcontrib><creatorcontrib>FANG TAO</creatorcontrib><creatorcontrib>ZHOU CHAO</creatorcontrib><creatorcontrib>LOU HANGYU</creatorcontrib><creatorcontrib>DU SHUYING</creatorcontrib><creatorcontrib>ZANG QIAN</creatorcontrib><creatorcontrib>GONG JIBING</creatorcontrib><creatorcontrib>YE TIANXIANG</creatorcontrib><title>Enhanced cross-domain sequential recommendation method combining large language model and comparative learning</title><description>The invention discloses an enhanced cross-domain sequence recommendation method combining a large language model and comparative learning, which belongs to the field of cross-domain sequence recommendation, and comprises the steps of fusing the large language model, finely adjusting a fusion proportion, decoupling long and short features of a sequence, respectively fusing long-term features and short-term features of different domains, and obtaining long-term interests and short-term interests. And fusing the long-term interests and the short-term interests of different domains after fusion to predict a next item. According to the method, effective fusion of long-term interests and short-term interests is realized, so that the accuracy of cross-domain sequential recommendation is remarkably improved. The accuracy of cross-domain sequence recommendation is improved to a certain extent, and a new view angle and a new technical path are provided for research and practice of a recommendation system. 本发明公开了一种结合大语言</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEOwjAQBMA0FAj4g3lAioig0EZREBUVfXTYS2LJvgu2w_sxiAfQ3K60c-uCe56INYzSQWIsjXiyrCKeCzhZcipAi_dgQ8kKK480Sdbi75Ytj8pRGJEvjwvl4sXAKeIvmSnkr1eeQeGjt8XqQS5i98tNsT_3t-5SYpYBcSYNRhq6a1Wd6vpYN017-Me8ATRrQ3E</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>JU JINGXIN</creator><creator>LIN TIANYU</creator><creator>FANG TAO</creator><creator>ZHOU CHAO</creator><creator>LOU HANGYU</creator><creator>DU SHUYING</creator><creator>ZANG QIAN</creator><creator>GONG JIBING</creator><creator>YE TIANXIANG</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Enhanced cross-domain sequential recommendation method combining large language model and comparative learning</title><author>JU JINGXIN ; LIN TIANYU ; FANG TAO ; ZHOU CHAO ; LOU HANGYU ; DU SHUYING ; ZANG QIAN ; GONG JIBING ; YE TIANXIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118445477A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JU JINGXIN</creatorcontrib><creatorcontrib>LIN TIANYU</creatorcontrib><creatorcontrib>FANG TAO</creatorcontrib><creatorcontrib>ZHOU CHAO</creatorcontrib><creatorcontrib>LOU HANGYU</creatorcontrib><creatorcontrib>DU SHUYING</creatorcontrib><creatorcontrib>ZANG QIAN</creatorcontrib><creatorcontrib>GONG JIBING</creatorcontrib><creatorcontrib>YE TIANXIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JU JINGXIN</au><au>LIN TIANYU</au><au>FANG TAO</au><au>ZHOU CHAO</au><au>LOU HANGYU</au><au>DU SHUYING</au><au>ZANG QIAN</au><au>GONG JIBING</au><au>YE TIANXIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Enhanced cross-domain sequential recommendation method combining large language model and comparative learning</title><date>2024-08-06</date><risdate>2024</risdate><abstract>The invention discloses an enhanced cross-domain sequence recommendation method combining a large language model and comparative learning, which belongs to the field of cross-domain sequence recommendation, and comprises the steps of fusing the large language model, finely adjusting a fusion proportion, decoupling long and short features of a sequence, respectively fusing long-term features and short-term features of different domains, and obtaining long-term interests and short-term interests. And fusing the long-term interests and the short-term interests of different domains after fusion to predict a next item. According to the method, effective fusion of long-term interests and short-term interests is realized, so that the accuracy of cross-domain sequential recommendation is remarkably improved. The accuracy of cross-domain sequence recommendation is improved to a certain extent, and a new view angle and a new technical path are provided for research and practice of a recommendation system. 本发明公开了一种结合大语言</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118445477A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Enhanced cross-domain sequential recommendation method combining large language model and comparative learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JU%20JINGXIN&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118445477A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true