Mobile robot navigation method, system and equipment and storage medium
The invention relates to the technical field of navigation, and provides a mobile robot navigation method, system and device and a storage medium, and the mobile robot navigation method comprises the steps: obtaining the current position, speed and target position of a mobile robot, and collecting s...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HU HANQIAO XIA TIANLEI LIU XIAOKANG WU HAIBIN GE XIN LU XIN HOU SHUBIN GONG LEI CHU YANHUA SU ZHENGHUA WANG QING ZHANG GUANYING |
description | The invention relates to the technical field of navigation, and provides a mobile robot navigation method, system and device and a storage medium, and the mobile robot navigation method comprises the steps: obtaining the current position, speed and target position of a mobile robot, and collecting sensor information through a laser radar sensor; the current position, the speed, the target position and the sensor information are input into a preset deep hierarchical reinforcement learning map-free scene navigation model, robot driving action information is obtained, and the preset deep hierarchical reinforcement learning map-free scene navigation model comprises a high-layer target selection sub-model and a low-layer obstacle avoidance control sub-model; and controlling the mobile robot to travel to the target position based on the robot travel action information. According to the method, the construction time of the navigation model can be shortened, and the generalization is good, so that the navigation of t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118443047A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118443047A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118443047A3</originalsourceid><addsrcrecordid>eNrjZHD3zU_KzElVKMpPyi9RyEssy0xPLMnMz1PITS3JyE_RUSiuLC5JzVVIzEtRSC0szSzITc0rAfOKS_KLEtNTgQpTMktzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFiYmxgYm5ozExagByojQC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mobile robot navigation method, system and equipment and storage medium</title><source>esp@cenet</source><creator>HU HANQIAO ; XIA TIANLEI ; LIU XIAOKANG ; WU HAIBIN ; GE XIN ; LU XIN ; HOU SHUBIN ; GONG LEI ; CHU YANHUA ; SU ZHENGHUA ; WANG QING ; ZHANG GUANYING</creator><creatorcontrib>HU HANQIAO ; XIA TIANLEI ; LIU XIAOKANG ; WU HAIBIN ; GE XIN ; LU XIN ; HOU SHUBIN ; GONG LEI ; CHU YANHUA ; SU ZHENGHUA ; WANG QING ; ZHANG GUANYING</creatorcontrib><description>The invention relates to the technical field of navigation, and provides a mobile robot navigation method, system and device and a storage medium, and the mobile robot navigation method comprises the steps: obtaining the current position, speed and target position of a mobile robot, and collecting sensor information through a laser radar sensor; the current position, the speed, the target position and the sensor information are input into a preset deep hierarchical reinforcement learning map-free scene navigation model, robot driving action information is obtained, and the preset deep hierarchical reinforcement learning map-free scene navigation model comprises a high-layer target selection sub-model and a low-layer obstacle avoidance control sub-model; and controlling the mobile robot to travel to the target position based on the robot travel action information. According to the method, the construction time of the navigation model can be shortened, and the generalization is good, so that the navigation of t</description><language>chi ; eng</language><subject>GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240806&DB=EPODOC&CC=CN&NR=118443047A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240806&DB=EPODOC&CC=CN&NR=118443047A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU HANQIAO</creatorcontrib><creatorcontrib>XIA TIANLEI</creatorcontrib><creatorcontrib>LIU XIAOKANG</creatorcontrib><creatorcontrib>WU HAIBIN</creatorcontrib><creatorcontrib>GE XIN</creatorcontrib><creatorcontrib>LU XIN</creatorcontrib><creatorcontrib>HOU SHUBIN</creatorcontrib><creatorcontrib>GONG LEI</creatorcontrib><creatorcontrib>CHU YANHUA</creatorcontrib><creatorcontrib>SU ZHENGHUA</creatorcontrib><creatorcontrib>WANG QING</creatorcontrib><creatorcontrib>ZHANG GUANYING</creatorcontrib><title>Mobile robot navigation method, system and equipment and storage medium</title><description>The invention relates to the technical field of navigation, and provides a mobile robot navigation method, system and device and a storage medium, and the mobile robot navigation method comprises the steps: obtaining the current position, speed and target position of a mobile robot, and collecting sensor information through a laser radar sensor; the current position, the speed, the target position and the sensor information are input into a preset deep hierarchical reinforcement learning map-free scene navigation model, robot driving action information is obtained, and the preset deep hierarchical reinforcement learning map-free scene navigation model comprises a high-layer target selection sub-model and a low-layer obstacle avoidance control sub-model; and controlling the mobile robot to travel to the target position based on the robot travel action information. According to the method, the construction time of the navigation model can be shortened, and the generalization is good, so that the navigation of t</description><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3zU_KzElVKMpPyi9RyEssy0xPLMnMz1PITS3JyE_RUSiuLC5JzVVIzEtRSC0szSzITc0rAfOKS_KLEtNTgQpTMktzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGFiYmxgYm5ozExagByojQC</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>HU HANQIAO</creator><creator>XIA TIANLEI</creator><creator>LIU XIAOKANG</creator><creator>WU HAIBIN</creator><creator>GE XIN</creator><creator>LU XIN</creator><creator>HOU SHUBIN</creator><creator>GONG LEI</creator><creator>CHU YANHUA</creator><creator>SU ZHENGHUA</creator><creator>WANG QING</creator><creator>ZHANG GUANYING</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Mobile robot navigation method, system and equipment and storage medium</title><author>HU HANQIAO ; XIA TIANLEI ; LIU XIAOKANG ; WU HAIBIN ; GE XIN ; LU XIN ; HOU SHUBIN ; GONG LEI ; CHU YANHUA ; SU ZHENGHUA ; WANG QING ; ZHANG GUANYING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118443047A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HU HANQIAO</creatorcontrib><creatorcontrib>XIA TIANLEI</creatorcontrib><creatorcontrib>LIU XIAOKANG</creatorcontrib><creatorcontrib>WU HAIBIN</creatorcontrib><creatorcontrib>GE XIN</creatorcontrib><creatorcontrib>LU XIN</creatorcontrib><creatorcontrib>HOU SHUBIN</creatorcontrib><creatorcontrib>GONG LEI</creatorcontrib><creatorcontrib>CHU YANHUA</creatorcontrib><creatorcontrib>SU ZHENGHUA</creatorcontrib><creatorcontrib>WANG QING</creatorcontrib><creatorcontrib>ZHANG GUANYING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU HANQIAO</au><au>XIA TIANLEI</au><au>LIU XIAOKANG</au><au>WU HAIBIN</au><au>GE XIN</au><au>LU XIN</au><au>HOU SHUBIN</au><au>GONG LEI</au><au>CHU YANHUA</au><au>SU ZHENGHUA</au><au>WANG QING</au><au>ZHANG GUANYING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mobile robot navigation method, system and equipment and storage medium</title><date>2024-08-06</date><risdate>2024</risdate><abstract>The invention relates to the technical field of navigation, and provides a mobile robot navigation method, system and device and a storage medium, and the mobile robot navigation method comprises the steps: obtaining the current position, speed and target position of a mobile robot, and collecting sensor information through a laser radar sensor; the current position, the speed, the target position and the sensor information are input into a preset deep hierarchical reinforcement learning map-free scene navigation model, robot driving action information is obtained, and the preset deep hierarchical reinforcement learning map-free scene navigation model comprises a high-layer target selection sub-model and a low-layer obstacle avoidance control sub-model; and controlling the mobile robot to travel to the target position based on the robot travel action information. According to the method, the construction time of the navigation model can be shortened, and the generalization is good, so that the navigation of t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118443047A |
source | esp@cenet |
subjects | GYROSCOPIC INSTRUMENTS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS SURVEYING TESTING |
title | Mobile robot navigation method, system and equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20HANQIAO&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118443047A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |