Automobile storage battery voltage prediction model training method, voltage prediction method and device

The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUE KAILAN, WU SHANGBO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUE KAILAN
WU SHANGBO
description The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118427603A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118427603A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118427603A3</originalsourceid><addsrcrecordid>eNqNirEKwkAQBa-xEPUf1l7BGFHbEBQrK_twyb3EhcvtcVkD_r0olhZWwzAzNVw8VHqp2YMGlWQ7UG1VkZ40ite3xwTHjbIE6sXBkybLgUNHPfQubvXz_CSywZHDyA3mZtJaP2Dx5cwsz6dbeVkjSoUh2gYBWpXXLDvutof9Ji_yf54XunBBVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><source>esp@cenet</source><creator>YUE KAILAN ; WU SHANGBO</creator><creatorcontrib>YUE KAILAN ; WU SHANGBO</creatorcontrib><description>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240802&amp;DB=EPODOC&amp;CC=CN&amp;NR=118427603A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240802&amp;DB=EPODOC&amp;CC=CN&amp;NR=118427603A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE KAILAN</creatorcontrib><creatorcontrib>WU SHANGBO</creatorcontrib><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><description>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwkAQBa-xEPUf1l7BGFHbEBQrK_twyb3EhcvtcVkD_r0olhZWwzAzNVw8VHqp2YMGlWQ7UG1VkZ40ite3xwTHjbIE6sXBkybLgUNHPfQubvXz_CSywZHDyA3mZtJaP2Dx5cwsz6dbeVkjSoUh2gYBWpXXLDvutof9Ji_yf54XunBBVQ</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>YUE KAILAN</creator><creator>WU SHANGBO</creator><scope>EVB</scope></search><sort><creationdate>20240802</creationdate><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><author>YUE KAILAN ; WU SHANGBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118427603A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE KAILAN</creatorcontrib><creatorcontrib>WU SHANGBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE KAILAN</au><au>WU SHANGBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><date>2024-08-02</date><risdate>2024</risdate><abstract>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118427603A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Automobile storage battery voltage prediction model training method, voltage prediction method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20KAILAN&rft.date=2024-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118427603A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true