Automobile storage battery voltage prediction model training method, voltage prediction method and device
The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUE KAILAN WU SHANGBO |
description | The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118427603A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118427603A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118427603A3</originalsourceid><addsrcrecordid>eNqNirEKwkAQBa-xEPUf1l7BGFHbEBQrK_twyb3EhcvtcVkD_r0olhZWwzAzNVw8VHqp2YMGlWQ7UG1VkZ40ite3xwTHjbIE6sXBkybLgUNHPfQubvXz_CSywZHDyA3mZtJaP2Dx5cwsz6dbeVkjSoUh2gYBWpXXLDvutof9Ji_yf54XunBBVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><source>esp@cenet</source><creator>YUE KAILAN ; WU SHANGBO</creator><creatorcontrib>YUE KAILAN ; WU SHANGBO</creatorcontrib><description>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240802&DB=EPODOC&CC=CN&NR=118427603A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240802&DB=EPODOC&CC=CN&NR=118427603A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE KAILAN</creatorcontrib><creatorcontrib>WU SHANGBO</creatorcontrib><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><description>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwkAQBa-xEPUf1l7BGFHbEBQrK_twyb3EhcvtcVkD_r0olhZWwzAzNVw8VHqp2YMGlWQ7UG1VkZ40ite3xwTHjbIE6sXBkybLgUNHPfQubvXz_CSywZHDyA3mZtJaP2Dx5cwsz6dbeVkjSoUh2gYBWpXXLDvutof9Ji_yf54XunBBVQ</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>YUE KAILAN</creator><creator>WU SHANGBO</creator><scope>EVB</scope></search><sort><creationdate>20240802</creationdate><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><author>YUE KAILAN ; WU SHANGBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118427603A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE KAILAN</creatorcontrib><creatorcontrib>WU SHANGBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE KAILAN</au><au>WU SHANGBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile storage battery voltage prediction model training method, voltage prediction method and device</title><date>2024-08-02</date><risdate>2024</risdate><abstract>The invention relates to an automobile storage battery voltage prediction model training method and device, a voltage prediction method and device, equipment and a medium. The method comprises the following steps: acquiring multiple pieces of time sequence data of a sample automobile corresponding to a first time interval, and inputting the multiple pieces of time sequence data into a to-be-trained automobile storage battery voltage prediction model to obtain time sequence features corresponding to the time sequence data; obtaining a feature weight corresponding to each time sequence feature through an attention mechanism, and obtaining a predicted storage battery voltage signal, corresponding to the second time interval, of the sample automobile according to each time sequence feature and the feature weight; and according to the difference between the actual storage battery voltage signal of the sample automobile and the actual storage battery voltage signal of the sample automobile corresponding to the seco</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118427603A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Automobile storage battery voltage prediction model training method, voltage prediction method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20KAILAN&rft.date=2024-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118427603A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |