Automobile wind tunnel large fan system health prediction system and method
The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter dat...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG WENJIE ZHANG DAN WANG QINGYANG LAN PENG TANG LAN SHI FENG ZHOU ZHIYUAN TAN WENLIN WANG RUI RAN MAOGUO ZHANG HAOQI ZHOU YOU XU LEI |
description | The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118424639A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118424639A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118424639A3</originalsourceid><addsrcrecordid>eNrjZPB2LC3Jz81PysxJVSjPzEtRKCnNy0vNUchJLEpPVUhLzFMoriwuSc1VyEhNzCnJUCgoSk3JTC7JzIdLJAI15aaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLEyMTM2NLR2Ni1AAAgR41vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile wind tunnel large fan system health prediction system and method</title><source>esp@cenet</source><creator>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</creator><creatorcontrib>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</creatorcontrib><description>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240802&DB=EPODOC&CC=CN&NR=118424639A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240802&DB=EPODOC&CC=CN&NR=118424639A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WENJIE</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>WANG QINGYANG</creatorcontrib><creatorcontrib>LAN PENG</creatorcontrib><creatorcontrib>TANG LAN</creatorcontrib><creatorcontrib>SHI FENG</creatorcontrib><creatorcontrib>ZHOU ZHIYUAN</creatorcontrib><creatorcontrib>TAN WENLIN</creatorcontrib><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>RAN MAOGUO</creatorcontrib><creatorcontrib>ZHANG HAOQI</creatorcontrib><creatorcontrib>ZHOU YOU</creatorcontrib><creatorcontrib>XU LEI</creatorcontrib><title>Automobile wind tunnel large fan system health prediction system and method</title><description>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2LC3Jz81PysxJVSjPzEtRKCnNy0vNUchJLEpPVUhLzFMoriwuSc1VyEhNzCnJUCgoSk3JTC7JzIdLJAI15aaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLEyMTM2NLR2Ni1AAAgR41vA</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>WANG WENJIE</creator><creator>ZHANG DAN</creator><creator>WANG QINGYANG</creator><creator>LAN PENG</creator><creator>TANG LAN</creator><creator>SHI FENG</creator><creator>ZHOU ZHIYUAN</creator><creator>TAN WENLIN</creator><creator>WANG RUI</creator><creator>RAN MAOGUO</creator><creator>ZHANG HAOQI</creator><creator>ZHOU YOU</creator><creator>XU LEI</creator><scope>EVB</scope></search><sort><creationdate>20240802</creationdate><title>Automobile wind tunnel large fan system health prediction system and method</title><author>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118424639A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WENJIE</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>WANG QINGYANG</creatorcontrib><creatorcontrib>LAN PENG</creatorcontrib><creatorcontrib>TANG LAN</creatorcontrib><creatorcontrib>SHI FENG</creatorcontrib><creatorcontrib>ZHOU ZHIYUAN</creatorcontrib><creatorcontrib>TAN WENLIN</creatorcontrib><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>RAN MAOGUO</creatorcontrib><creatorcontrib>ZHANG HAOQI</creatorcontrib><creatorcontrib>ZHOU YOU</creatorcontrib><creatorcontrib>XU LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WENJIE</au><au>ZHANG DAN</au><au>WANG QINGYANG</au><au>LAN PENG</au><au>TANG LAN</au><au>SHI FENG</au><au>ZHOU ZHIYUAN</au><au>TAN WENLIN</au><au>WANG RUI</au><au>RAN MAOGUO</au><au>ZHANG HAOQI</au><au>ZHOU YOU</au><au>XU LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile wind tunnel large fan system health prediction system and method</title><date>2024-08-02</date><risdate>2024</risdate><abstract>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118424639A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING MEASURING PHYSICS TESTING TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR |
title | Automobile wind tunnel large fan system health prediction system and method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WENJIE&rft.date=2024-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118424639A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |