Automobile wind tunnel large fan system health prediction system and method

The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG WENJIE, ZHANG DAN, WANG QINGYANG, LAN PENG, TANG LAN, SHI FENG, ZHOU ZHIYUAN, TAN WENLIN, WANG RUI, RAN MAOGUO, ZHANG HAOQI, ZHOU YOU, XU LEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG WENJIE
ZHANG DAN
WANG QINGYANG
LAN PENG
TANG LAN
SHI FENG
ZHOU ZHIYUAN
TAN WENLIN
WANG RUI
RAN MAOGUO
ZHANG HAOQI
ZHOU YOU
XU LEI
description The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118424639A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118424639A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118424639A3</originalsourceid><addsrcrecordid>eNrjZPB2LC3Jz81PysxJVSjPzEtRKCnNy0vNUchJLEpPVUhLzFMoriwuSc1VyEhNzCnJUCgoSk3JTC7JzIdLJAI15aaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLEyMTM2NLR2Ni1AAAgR41vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile wind tunnel large fan system health prediction system and method</title><source>esp@cenet</source><creator>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</creator><creatorcontrib>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</creatorcontrib><description>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240802&amp;DB=EPODOC&amp;CC=CN&amp;NR=118424639A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240802&amp;DB=EPODOC&amp;CC=CN&amp;NR=118424639A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WENJIE</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>WANG QINGYANG</creatorcontrib><creatorcontrib>LAN PENG</creatorcontrib><creatorcontrib>TANG LAN</creatorcontrib><creatorcontrib>SHI FENG</creatorcontrib><creatorcontrib>ZHOU ZHIYUAN</creatorcontrib><creatorcontrib>TAN WENLIN</creatorcontrib><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>RAN MAOGUO</creatorcontrib><creatorcontrib>ZHANG HAOQI</creatorcontrib><creatorcontrib>ZHOU YOU</creatorcontrib><creatorcontrib>XU LEI</creatorcontrib><title>Automobile wind tunnel large fan system health prediction system and method</title><description>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2LC3Jz81PysxJVSjPzEtRKCnNy0vNUchJLEpPVUhLzFMoriwuSc1VyEhNzCnJUCgoSk3JTC7JzIdLJAI15aaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MLEyMTM2NLR2Ni1AAAgR41vA</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>WANG WENJIE</creator><creator>ZHANG DAN</creator><creator>WANG QINGYANG</creator><creator>LAN PENG</creator><creator>TANG LAN</creator><creator>SHI FENG</creator><creator>ZHOU ZHIYUAN</creator><creator>TAN WENLIN</creator><creator>WANG RUI</creator><creator>RAN MAOGUO</creator><creator>ZHANG HAOQI</creator><creator>ZHOU YOU</creator><creator>XU LEI</creator><scope>EVB</scope></search><sort><creationdate>20240802</creationdate><title>Automobile wind tunnel large fan system health prediction system and method</title><author>WANG WENJIE ; ZHANG DAN ; WANG QINGYANG ; LAN PENG ; TANG LAN ; SHI FENG ; ZHOU ZHIYUAN ; TAN WENLIN ; WANG RUI ; RAN MAOGUO ; ZHANG HAOQI ; ZHOU YOU ; XU LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118424639A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WENJIE</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>WANG QINGYANG</creatorcontrib><creatorcontrib>LAN PENG</creatorcontrib><creatorcontrib>TANG LAN</creatorcontrib><creatorcontrib>SHI FENG</creatorcontrib><creatorcontrib>ZHOU ZHIYUAN</creatorcontrib><creatorcontrib>TAN WENLIN</creatorcontrib><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>RAN MAOGUO</creatorcontrib><creatorcontrib>ZHANG HAOQI</creatorcontrib><creatorcontrib>ZHOU YOU</creatorcontrib><creatorcontrib>XU LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WENJIE</au><au>ZHANG DAN</au><au>WANG QINGYANG</au><au>LAN PENG</au><au>TANG LAN</au><au>SHI FENG</au><au>ZHOU ZHIYUAN</au><au>TAN WENLIN</au><au>WANG RUI</au><au>RAN MAOGUO</au><au>ZHANG HAOQI</au><au>ZHOU YOU</au><au>XU LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile wind tunnel large fan system health prediction system and method</title><date>2024-08-02</date><risdate>2024</risdate><abstract>The invention relates to the technical field of automobile wind tunnels, in particular to a health prediction system and method for a large fan system of an automobile wind tunnel, and the method comprises the steps: obtaining real-time equipment parameter data and historical equipment parameter data of all equipment; performing data preprocessing on the acquired equipment parameter data; constructing a tree structure evaluation system comprising a system, a subsystem and equipment from bottom to top; prediction models are constructed and trained, the prediction models comprise a first prediction model and a second prediction model, the first prediction model is constructed based on a large-scale time sequence prediction model, and the second prediction model is constructed based on a DSCNN neural network and a tree structure evaluation system; and using the trained prediction model to output health prediction results of each level of the system, the subsystem, the equipment and the equipment parameters. Acco</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118424639A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Automobile wind tunnel large fan system health prediction system and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WENJIE&rft.date=2024-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118424639A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true