Airborne machine component fault detection
An on-board machine electronic control module (ECM) executes a reduced order model configured to generate virtual sensor data associated with a machine component based on sensor data measured by actual sensors. The ECM can also execute a machine learning model configured to generate offset data for...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BIENY STEVEN D HU XUEFEI PAN CHUNHUI WIELAND, NIGEL, JAMES ZHANG YANCHAI GATES JOHN D ZHANG DAOJIE JAYAKUDI, NIRANJAN, A ZHAO WENMING |
description | An on-board machine electronic control module (ECM) executes a reduced order model configured to generate virtual sensor data associated with a machine component based on sensor data measured by actual sensors. The ECM can also execute a machine learning model configured to generate offset data for the sensor data and/or virtual sensor data based on operating conditions, age limit of machine components, and/or other factors that the reduced order model may not consider. The sensor data and/or virtual sensor data adjusted based on the offset data can indicate whether the machine component has failed or predicted to fail at a future point in time, and/or the remaining useful life of the machine component.
一种机载于机器上的电子控制模块(ECM)执行降阶模型,该降阶模型被配置成基于由实际传感器测量的传感器数据来生成与机器部件相关联的虚拟传感器数据。ECM还能够执行机器学习模型,该机器学习模型被配置成基于操作状况、机器部件的年限和/或降阶模型可能不考虑的其他因素来生成传感器数据和/或虚拟传感器数据的偏移数据。基于偏移数据调整的传感器数据和/或虚拟传感器数据能够指示机器部件是否已失效或预测在未来时间点失效,和/或机器部件的剩余使用寿命。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118414588A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118414588A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118414588A3</originalsourceid><addsrcrecordid>eNrjZNByzCxKyi_KS1XITUzOyATSyfm5Bfl5qXklCmmJpTklCimpJanJJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwsTQxNTCwtGYGDUAScApVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Airborne machine component fault detection</title><source>esp@cenet</source><creator>BIENY STEVEN D ; HU XUEFEI ; PAN CHUNHUI ; WIELAND, NIGEL, JAMES ; ZHANG YANCHAI ; GATES JOHN D ; ZHANG DAOJIE ; JAYAKUDI, NIRANJAN, A ; ZHAO WENMING</creator><creatorcontrib>BIENY STEVEN D ; HU XUEFEI ; PAN CHUNHUI ; WIELAND, NIGEL, JAMES ; ZHANG YANCHAI ; GATES JOHN D ; ZHANG DAOJIE ; JAYAKUDI, NIRANJAN, A ; ZHAO WENMING</creatorcontrib><description>An on-board machine electronic control module (ECM) executes a reduced order model configured to generate virtual sensor data associated with a machine component based on sensor data measured by actual sensors. The ECM can also execute a machine learning model configured to generate offset data for the sensor data and/or virtual sensor data based on operating conditions, age limit of machine components, and/or other factors that the reduced order model may not consider. The sensor data and/or virtual sensor data adjusted based on the offset data can indicate whether the machine component has failed or predicted to fail at a future point in time, and/or the remaining useful life of the machine component.
一种机载于机器上的电子控制模块(ECM)执行降阶模型,该降阶模型被配置成基于由实际传感器测量的传感器数据来生成与机器部件相关联的虚拟传感器数据。ECM还能够执行机器学习模型,该机器学习模型被配置成基于操作状况、机器部件的年限和/或降阶模型可能不考虑的其他因素来生成传感器数据和/或虚拟传感器数据的偏移数据。基于偏移数据调整的传感器数据和/或虚拟传感器数据能够指示机器部件是否已失效或预测在未来时间点失效,和/或机器部件的剩余使用寿命。</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240730&DB=EPODOC&CC=CN&NR=118414588A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240730&DB=EPODOC&CC=CN&NR=118414588A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BIENY STEVEN D</creatorcontrib><creatorcontrib>HU XUEFEI</creatorcontrib><creatorcontrib>PAN CHUNHUI</creatorcontrib><creatorcontrib>WIELAND, NIGEL, JAMES</creatorcontrib><creatorcontrib>ZHANG YANCHAI</creatorcontrib><creatorcontrib>GATES JOHN D</creatorcontrib><creatorcontrib>ZHANG DAOJIE</creatorcontrib><creatorcontrib>JAYAKUDI, NIRANJAN, A</creatorcontrib><creatorcontrib>ZHAO WENMING</creatorcontrib><title>Airborne machine component fault detection</title><description>An on-board machine electronic control module (ECM) executes a reduced order model configured to generate virtual sensor data associated with a machine component based on sensor data measured by actual sensors. The ECM can also execute a machine learning model configured to generate offset data for the sensor data and/or virtual sensor data based on operating conditions, age limit of machine components, and/or other factors that the reduced order model may not consider. The sensor data and/or virtual sensor data adjusted based on the offset data can indicate whether the machine component has failed or predicted to fail at a future point in time, and/or the remaining useful life of the machine component.
一种机载于机器上的电子控制模块(ECM)执行降阶模型,该降阶模型被配置成基于由实际传感器测量的传感器数据来生成与机器部件相关联的虚拟传感器数据。ECM还能够执行机器学习模型,该机器学习模型被配置成基于操作状况、机器部件的年限和/或降阶模型可能不考虑的其他因素来生成传感器数据和/或虚拟传感器数据的偏移数据。基于偏移数据调整的传感器数据和/或虚拟传感器数据能够指示机器部件是否已失效或预测在未来时间点失效,和/或机器部件的剩余使用寿命。</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNByzCxKyi_KS1XITUzOyATSyfm5Bfl5qXklCmmJpTklCimpJanJJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQwsTQxNTCwtGYGDUAScApVg</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>BIENY STEVEN D</creator><creator>HU XUEFEI</creator><creator>PAN CHUNHUI</creator><creator>WIELAND, NIGEL, JAMES</creator><creator>ZHANG YANCHAI</creator><creator>GATES JOHN D</creator><creator>ZHANG DAOJIE</creator><creator>JAYAKUDI, NIRANJAN, A</creator><creator>ZHAO WENMING</creator><scope>EVB</scope></search><sort><creationdate>20240730</creationdate><title>Airborne machine component fault detection</title><author>BIENY STEVEN D ; HU XUEFEI ; PAN CHUNHUI ; WIELAND, NIGEL, JAMES ; ZHANG YANCHAI ; GATES JOHN D ; ZHANG DAOJIE ; JAYAKUDI, NIRANJAN, A ; ZHAO WENMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118414588A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>BIENY STEVEN D</creatorcontrib><creatorcontrib>HU XUEFEI</creatorcontrib><creatorcontrib>PAN CHUNHUI</creatorcontrib><creatorcontrib>WIELAND, NIGEL, JAMES</creatorcontrib><creatorcontrib>ZHANG YANCHAI</creatorcontrib><creatorcontrib>GATES JOHN D</creatorcontrib><creatorcontrib>ZHANG DAOJIE</creatorcontrib><creatorcontrib>JAYAKUDI, NIRANJAN, A</creatorcontrib><creatorcontrib>ZHAO WENMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BIENY STEVEN D</au><au>HU XUEFEI</au><au>PAN CHUNHUI</au><au>WIELAND, NIGEL, JAMES</au><au>ZHANG YANCHAI</au><au>GATES JOHN D</au><au>ZHANG DAOJIE</au><au>JAYAKUDI, NIRANJAN, A</au><au>ZHAO WENMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Airborne machine component fault detection</title><date>2024-07-30</date><risdate>2024</risdate><abstract>An on-board machine electronic control module (ECM) executes a reduced order model configured to generate virtual sensor data associated with a machine component based on sensor data measured by actual sensors. The ECM can also execute a machine learning model configured to generate offset data for the sensor data and/or virtual sensor data based on operating conditions, age limit of machine components, and/or other factors that the reduced order model may not consider. The sensor data and/or virtual sensor data adjusted based on the offset data can indicate whether the machine component has failed or predicted to fail at a future point in time, and/or the remaining useful life of the machine component.
一种机载于机器上的电子控制模块(ECM)执行降阶模型,该降阶模型被配置成基于由实际传感器测量的传感器数据来生成与机器部件相关联的虚拟传感器数据。ECM还能够执行机器学习模型,该机器学习模型被配置成基于操作状况、机器部件的年限和/或降阶模型可能不考虑的其他因素来生成传感器数据和/或虚拟传感器数据的偏移数据。基于偏移数据调整的传感器数据和/或虚拟传感器数据能够指示机器部件是否已失效或预测在未来时间点失效,和/或机器部件的剩余使用寿命。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118414588A |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Airborne machine component fault detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BIENY%20STEVEN%20D&rft.date=2024-07-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118414588A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |