Base station position prediction method based on machine learning

The invention relates to the technical field of machine learning, and relates to a base station position prediction method based on machine learning, which comprises the following steps: S1, obtaining operator base station data, third-party base station data and signaling trajectory data; s2, calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIANG ZHIPENG, LI NAN, DAI SHUAIFU, ZHANG JIANYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIANG ZHIPENG
LI NAN
DAI SHUAIFU
ZHANG JIANYU
description The invention relates to the technical field of machine learning, and relates to a base station position prediction method based on machine learning, which comprises the following steps: S1, obtaining operator base station data, third-party base station data and signaling trajectory data; s2, calculating the distance between the base stations in the operator base station data and the third-party base station data, distinguishing according to a preset distance threshold value, and generating a white list base station table and a grey list base station table; s3, correcting the white list base station table and the grey list base station table according to the signaling track data; and S4, extracting the base station features of the white list base station to train a machine learning model, and predicting the base station features of the grey list base station by using the trained machine learning model. According to the method, each base station is divided in combination with multi-party data; the white list b
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118413886A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118413886A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118413886A3</originalsourceid><addsrcrecordid>eNrjZHB0SixOVSguSSzJzM9TKMgvzoQwilJTMpPBzNzUkoz8FIUkoLoUBRA_MTkjMy9VISc1sSgvMy-dh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqfmpZbEO_sZGlqYGBpbWJg5GhOjBgAZrTHd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Base station position prediction method based on machine learning</title><source>esp@cenet</source><creator>JIANG ZHIPENG ; LI NAN ; DAI SHUAIFU ; ZHANG JIANYU</creator><creatorcontrib>JIANG ZHIPENG ; LI NAN ; DAI SHUAIFU ; ZHANG JIANYU</creatorcontrib><description>The invention relates to the technical field of machine learning, and relates to a base station position prediction method based on machine learning, which comprises the following steps: S1, obtaining operator base station data, third-party base station data and signaling trajectory data; s2, calculating the distance between the base stations in the operator base station data and the third-party base station data, distinguishing according to a preset distance threshold value, and generating a white list base station table and a grey list base station table; s3, correcting the white list base station table and the grey list base station table according to the signaling track data; and S4, extracting the base station features of the white list base station to train a machine learning model, and predicting the base station features of the grey list base station by using the trained machine learning model. According to the method, each base station is divided in combination with multi-party data; the white list b</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240730&amp;DB=EPODOC&amp;CC=CN&amp;NR=118413886A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240730&amp;DB=EPODOC&amp;CC=CN&amp;NR=118413886A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIANG ZHIPENG</creatorcontrib><creatorcontrib>LI NAN</creatorcontrib><creatorcontrib>DAI SHUAIFU</creatorcontrib><creatorcontrib>ZHANG JIANYU</creatorcontrib><title>Base station position prediction method based on machine learning</title><description>The invention relates to the technical field of machine learning, and relates to a base station position prediction method based on machine learning, which comprises the following steps: S1, obtaining operator base station data, third-party base station data and signaling trajectory data; s2, calculating the distance between the base stations in the operator base station data and the third-party base station data, distinguishing according to a preset distance threshold value, and generating a white list base station table and a grey list base station table; s3, correcting the white list base station table and the grey list base station table according to the signaling track data; and S4, extracting the base station features of the white list base station to train a machine learning model, and predicting the base station features of the grey list base station by using the trained machine learning model. According to the method, each base station is divided in combination with multi-party data; the white list b</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0SixOVSguSSzJzM9TKMgvzoQwilJTMpPBzNzUkoz8FIUkoLoUBRA_MTkjMy9VISc1sSgvMy-dh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJqfmpZbEO_sZGlqYGBpbWJg5GhOjBgAZrTHd</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>JIANG ZHIPENG</creator><creator>LI NAN</creator><creator>DAI SHUAIFU</creator><creator>ZHANG JIANYU</creator><scope>EVB</scope></search><sort><creationdate>20240730</creationdate><title>Base station position prediction method based on machine learning</title><author>JIANG ZHIPENG ; LI NAN ; DAI SHUAIFU ; ZHANG JIANYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118413886A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIANG ZHIPENG</creatorcontrib><creatorcontrib>LI NAN</creatorcontrib><creatorcontrib>DAI SHUAIFU</creatorcontrib><creatorcontrib>ZHANG JIANYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIANG ZHIPENG</au><au>LI NAN</au><au>DAI SHUAIFU</au><au>ZHANG JIANYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Base station position prediction method based on machine learning</title><date>2024-07-30</date><risdate>2024</risdate><abstract>The invention relates to the technical field of machine learning, and relates to a base station position prediction method based on machine learning, which comprises the following steps: S1, obtaining operator base station data, third-party base station data and signaling trajectory data; s2, calculating the distance between the base stations in the operator base station data and the third-party base station data, distinguishing according to a preset distance threshold value, and generating a white list base station table and a grey list base station table; s3, correcting the white list base station table and the grey list base station table according to the signaling track data; and S4, extracting the base station features of the white list base station to train a machine learning model, and predicting the base station features of the grey list base station by using the trained machine learning model. According to the method, each base station is divided in combination with multi-party data; the white list b</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118413886A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
WIRELESS COMMUNICATIONS NETWORKS
title Base station position prediction method based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIANG%20ZHIPENG&rft.date=2024-07-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118413886A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true