Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation

The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU HONGGUI, JIANG XIN, LUO RENQIANG, WEN WEN, CHEN ZHIDONG, LI TAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU HONGGUI
JIANG XIN
LUO RENQIANG
WEN WEN
CHEN ZHIDONG
LI TAO
description The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118410365A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118410365A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118410365A3</originalsourceid><addsrcrecordid>eNqNjLEKwlAMRbs4iPoP8QMES1VcpVicnNxL9KVt4L2kvES_3wq6C5dzlsOdF6FBgQ6f0SGpsGtm6QElQGDsRY0NEvmgAe5oFEBlWmQhiIRZfnWaHviFmdEJzD8kc07orLIsZh1Go9XXi2LdnG_1ZUOjtmQjPkjI2_palsddua0O-1P1T_MG-14_Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><source>esp@cenet</source><creator>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</creator><creatorcontrib>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</creatorcontrib><description>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240730&amp;DB=EPODOC&amp;CC=CN&amp;NR=118410365A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240730&amp;DB=EPODOC&amp;CC=CN&amp;NR=118410365A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU HONGGUI</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>LUO RENQIANG</creatorcontrib><creatorcontrib>WEN WEN</creatorcontrib><creatorcontrib>CHEN ZHIDONG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><description>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwlAMRbs4iPoP8QMES1VcpVicnNxL9KVt4L2kvES_3wq6C5dzlsOdF6FBgQ6f0SGpsGtm6QElQGDsRY0NEvmgAe5oFEBlWmQhiIRZfnWaHviFmdEJzD8kc07orLIsZh1Go9XXi2LdnG_1ZUOjtmQjPkjI2_palsddua0O-1P1T_MG-14_Kg</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>ZHOU HONGGUI</creator><creator>JIANG XIN</creator><creator>LUO RENQIANG</creator><creator>WEN WEN</creator><creator>CHEN ZHIDONG</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20240730</creationdate><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><author>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118410365A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU HONGGUI</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>LUO RENQIANG</creatorcontrib><creatorcontrib>WEN WEN</creatorcontrib><creatorcontrib>CHEN ZHIDONG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU HONGGUI</au><au>JIANG XIN</au><au>LUO RENQIANG</au><au>WEN WEN</au><au>CHEN ZHIDONG</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><date>2024-07-30</date><risdate>2024</risdate><abstract>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118410365A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20HONGGUI&rft.date=2024-07-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118410365A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true