Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation
The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes fr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHOU HONGGUI JIANG XIN LUO RENQIANG WEN WEN CHEN ZHIDONG LI TAO |
description | The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118410365A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118410365A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118410365A3</originalsourceid><addsrcrecordid>eNqNjLEKwlAMRbs4iPoP8QMES1VcpVicnNxL9KVt4L2kvES_3wq6C5dzlsOdF6FBgQ6f0SGpsGtm6QElQGDsRY0NEvmgAe5oFEBlWmQhiIRZfnWaHviFmdEJzD8kc07orLIsZh1Go9XXi2LdnG_1ZUOjtmQjPkjI2_palsddua0O-1P1T_MG-14_Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><source>esp@cenet</source><creator>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</creator><creatorcontrib>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</creatorcontrib><description>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240730&DB=EPODOC&CC=CN&NR=118410365A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240730&DB=EPODOC&CC=CN&NR=118410365A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU HONGGUI</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>LUO RENQIANG</creatorcontrib><creatorcontrib>WEN WEN</creatorcontrib><creatorcontrib>CHEN ZHIDONG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><description>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwlAMRbs4iPoP8QMES1VcpVicnNxL9KVt4L2kvES_3wq6C5dzlsOdF6FBgQ6f0SGpsGtm6QElQGDsRY0NEvmgAe5oFEBlWmQhiIRZfnWaHviFmdEJzD8kc07orLIsZh1Go9XXi2LdnG_1ZUOjtmQjPkjI2_palsddua0O-1P1T_MG-14_Kg</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>ZHOU HONGGUI</creator><creator>JIANG XIN</creator><creator>LUO RENQIANG</creator><creator>WEN WEN</creator><creator>CHEN ZHIDONG</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20240730</creationdate><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><author>ZHOU HONGGUI ; JIANG XIN ; LUO RENQIANG ; WEN WEN ; CHEN ZHIDONG ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118410365A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU HONGGUI</creatorcontrib><creatorcontrib>JIANG XIN</creatorcontrib><creatorcontrib>LUO RENQIANG</creatorcontrib><creatorcontrib>WEN WEN</creatorcontrib><creatorcontrib>CHEN ZHIDONG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU HONGGUI</au><au>JIANG XIN</au><au>LUO RENQIANG</au><au>WEN WEN</au><au>CHEN ZHIDONG</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation</title><date>2024-07-30</date><risdate>2024</risdate><abstract>The invention relates to a fan fault monitoring and diagnosis method based on online learning and multivariate state estimation. The fan fault monitoring and diagnosis method comprises the following steps: acquiring variable data related to a generator and having a sampling frequency of 5 minutes from a master control SCADA system as an original data set; preprocessing the data by a DBSCAN algorithm based on probability distribution and interval distribution, deleting abnormal samples and fault samples, and dividing a preprocessed data set into a training data set and a test data set; performing normalization operation on the training data set and the test data set; establishing an MSET-based model through an improved memory matrix construction method; carrying out fault early warning based on a self-adaptive similarity threshold value; and after abnormal early warning is triggered, an early warning result is pushed to a centralized control center. According to the method, the sample redundancy in the memory</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118410365A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Fan fault monitoring and diagnosis method based on online learning and multivariate state estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20HONGGUI&rft.date=2024-07-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118410365A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |