Short-term power load prediction method and device

The invention provides a short-term power load prediction method and device, and belongs to the field of load prediction. The method comprises the following steps: acquiring first historical load data before a to-be-predicted time period in a target area; inputting the first historical load data int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU SHIYAO, XIA JING, MA GUOZHEN, LI YANMEI, ZHANG ZEYA, WANG YUNJIA, PANG NING, LIU XUEFEI, SHAO HUA, REN HENGJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU SHIYAO
XIA JING
MA GUOZHEN
LI YANMEI
ZHANG ZEYA
WANG YUNJIA
PANG NING
LIU XUEFEI
SHAO HUA
REN HENGJUN
description The invention provides a short-term power load prediction method and device, and belongs to the field of load prediction. The method comprises the following steps: acquiring first historical load data before a to-be-predicted time period in a target area; inputting the first historical load data into a preset short-term power load prediction model to obtain load prediction data of a to-be-predicted time period in the target area output by the short-term power load prediction model; wherein the short-term power load prediction model is obtained by training a long and short-term memory model based on second historical load data before different prediction time periods in the target area and load prediction data of corresponding prediction time periods in the target area, and hyper-parameters in the long and short-term memory model are determined according to an improved white whale optimization algorithm. The improved whale optimization algorithm is an improved whale optimization algorithm based on a smoothing
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118399385A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118399385A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118399385A3</originalsourceid><addsrcrecordid>eNrjZDAKzsgvKtEtSS3KVSjIL08tUsjJT0xRKChKTclMLsnMz1PITS3JyE9RSMxLUUhJLctMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFsaWlsYWpo7GxKgBAMPkLA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Short-term power load prediction method and device</title><source>esp@cenet</source><creator>HU SHIYAO ; XIA JING ; MA GUOZHEN ; LI YANMEI ; ZHANG ZEYA ; WANG YUNJIA ; PANG NING ; LIU XUEFEI ; SHAO HUA ; REN HENGJUN</creator><creatorcontrib>HU SHIYAO ; XIA JING ; MA GUOZHEN ; LI YANMEI ; ZHANG ZEYA ; WANG YUNJIA ; PANG NING ; LIU XUEFEI ; SHAO HUA ; REN HENGJUN</creatorcontrib><description>The invention provides a short-term power load prediction method and device, and belongs to the field of load prediction. The method comprises the following steps: acquiring first historical load data before a to-be-predicted time period in a target area; inputting the first historical load data into a preset short-term power load prediction model to obtain load prediction data of a to-be-predicted time period in the target area output by the short-term power load prediction model; wherein the short-term power load prediction model is obtained by training a long and short-term memory model based on second historical load data before different prediction time periods in the target area and load prediction data of corresponding prediction time periods in the target area, and hyper-parameters in the long and short-term memory model are determined according to an improved white whale optimization algorithm. The improved whale optimization algorithm is an improved whale optimization algorithm based on a smoothing</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118399385A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118399385A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU SHIYAO</creatorcontrib><creatorcontrib>XIA JING</creatorcontrib><creatorcontrib>MA GUOZHEN</creatorcontrib><creatorcontrib>LI YANMEI</creatorcontrib><creatorcontrib>ZHANG ZEYA</creatorcontrib><creatorcontrib>WANG YUNJIA</creatorcontrib><creatorcontrib>PANG NING</creatorcontrib><creatorcontrib>LIU XUEFEI</creatorcontrib><creatorcontrib>SHAO HUA</creatorcontrib><creatorcontrib>REN HENGJUN</creatorcontrib><title>Short-term power load prediction method and device</title><description>The invention provides a short-term power load prediction method and device, and belongs to the field of load prediction. The method comprises the following steps: acquiring first historical load data before a to-be-predicted time period in a target area; inputting the first historical load data into a preset short-term power load prediction model to obtain load prediction data of a to-be-predicted time period in the target area output by the short-term power load prediction model; wherein the short-term power load prediction model is obtained by training a long and short-term memory model based on second historical load data before different prediction time periods in the target area and load prediction data of corresponding prediction time periods in the target area, and hyper-parameters in the long and short-term memory model are determined according to an improved white whale optimization algorithm. The improved whale optimization algorithm is an improved whale optimization algorithm based on a smoothing</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAKzsgvKtEtSS3KVSjIL08tUsjJT0xRKChKTclMLsnMz1PITS3JyE9RSMxLUUhJLctMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGFsaWlsYWpo7GxKgBAMPkLA4</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>HU SHIYAO</creator><creator>XIA JING</creator><creator>MA GUOZHEN</creator><creator>LI YANMEI</creator><creator>ZHANG ZEYA</creator><creator>WANG YUNJIA</creator><creator>PANG NING</creator><creator>LIU XUEFEI</creator><creator>SHAO HUA</creator><creator>REN HENGJUN</creator><scope>EVB</scope></search><sort><creationdate>20240726</creationdate><title>Short-term power load prediction method and device</title><author>HU SHIYAO ; XIA JING ; MA GUOZHEN ; LI YANMEI ; ZHANG ZEYA ; WANG YUNJIA ; PANG NING ; LIU XUEFEI ; SHAO HUA ; REN HENGJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118399385A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>HU SHIYAO</creatorcontrib><creatorcontrib>XIA JING</creatorcontrib><creatorcontrib>MA GUOZHEN</creatorcontrib><creatorcontrib>LI YANMEI</creatorcontrib><creatorcontrib>ZHANG ZEYA</creatorcontrib><creatorcontrib>WANG YUNJIA</creatorcontrib><creatorcontrib>PANG NING</creatorcontrib><creatorcontrib>LIU XUEFEI</creatorcontrib><creatorcontrib>SHAO HUA</creatorcontrib><creatorcontrib>REN HENGJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU SHIYAO</au><au>XIA JING</au><au>MA GUOZHEN</au><au>LI YANMEI</au><au>ZHANG ZEYA</au><au>WANG YUNJIA</au><au>PANG NING</au><au>LIU XUEFEI</au><au>SHAO HUA</au><au>REN HENGJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Short-term power load prediction method and device</title><date>2024-07-26</date><risdate>2024</risdate><abstract>The invention provides a short-term power load prediction method and device, and belongs to the field of load prediction. The method comprises the following steps: acquiring first historical load data before a to-be-predicted time period in a target area; inputting the first historical load data into a preset short-term power load prediction model to obtain load prediction data of a to-be-predicted time period in the target area output by the short-term power load prediction model; wherein the short-term power load prediction model is obtained by training a long and short-term memory model based on second historical load data before different prediction time periods in the target area and load prediction data of corresponding prediction time periods in the target area, and hyper-parameters in the long and short-term memory model are determined according to an improved white whale optimization algorithm. The improved whale optimization algorithm is an improved whale optimization algorithm based on a smoothing</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118399385A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
title Short-term power load prediction method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20SHIYAO&rft.date=2024-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118399385A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true