Image multi-task feature extraction and classification system based on deep learning

The invention discloses an image multi-task feature extraction and classification system based on deep learning. The system comprises an image preprocessing module, a general feature extraction module, a specific task feature extraction module and a classification module. The image preprocessing mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI WEIMING, GUO XIUHUA, LYU SHIYUN, WANG JINQI, XIE WENHAN, ZHANG HAIPING, YANG RUNHUANG, YU SIQI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI WEIMING
GUO XIUHUA
LYU SHIYUN
WANG JINQI
XIE WENHAN
ZHANG HAIPING
YANG RUNHUANG
YU SIQI
description The invention discloses an image multi-task feature extraction and classification system based on deep learning. The system comprises an image preprocessing module, a general feature extraction module, a specific task feature extraction module and a classification module. The image preprocessing module is used for preprocessing a to-be-recognized medical image; the general feature extraction module is used for extracting general features; the specific task feature extraction module is used for extracting specific features; and the classification module is used for classifying the to-be-identified image according to the general features and the specific features. The design of the invention is a general framework, and supports wide image analysis tasks, such as image type identification, abnormal region detection in images, automatic evaluation of image features and the like, so that knowledge sharing and performance improvement in different tasks are realized. 本发明公开了一种基于深度学习的图像多任务特征提取及分类系统,包括:图像预处理模块、通用特征提取模块
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118397294A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118397294A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118397294A3</originalsourceid><addsrcrecordid>eNqNirEKwkAQBa-xEPUf1g9IESNoSgmKNlbpw3r3Eo5cLuF2A_r3ivgBVsMMszT1beAONMxBfaYsPbVgnRMIT01s1Y-RODqygUV86y1_k7xEMdCDBY4-7oCJAjhFH7u1WbQcBJsfV2Z7OdfVNcM0NpCJLSK0qe55fizKw67cn4p_nje5PDkc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image multi-task feature extraction and classification system based on deep learning</title><source>esp@cenet</source><creator>LI WEIMING ; GUO XIUHUA ; LYU SHIYUN ; WANG JINQI ; XIE WENHAN ; ZHANG HAIPING ; YANG RUNHUANG ; YU SIQI</creator><creatorcontrib>LI WEIMING ; GUO XIUHUA ; LYU SHIYUN ; WANG JINQI ; XIE WENHAN ; ZHANG HAIPING ; YANG RUNHUANG ; YU SIQI</creatorcontrib><description>The invention discloses an image multi-task feature extraction and classification system based on deep learning. The system comprises an image preprocessing module, a general feature extraction module, a specific task feature extraction module and a classification module. The image preprocessing module is used for preprocessing a to-be-recognized medical image; the general feature extraction module is used for extracting general features; the specific task feature extraction module is used for extracting specific features; and the classification module is used for classifying the to-be-identified image according to the general features and the specific features. The design of the invention is a general framework, and supports wide image analysis tasks, such as image type identification, abnormal region detection in images, automatic evaluation of image features and the like, so that knowledge sharing and performance improvement in different tasks are realized. 本发明公开了一种基于深度学习的图像多任务特征提取及分类系统,包括:图像预处理模块、通用特征提取模块</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118397294A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118397294A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI WEIMING</creatorcontrib><creatorcontrib>GUO XIUHUA</creatorcontrib><creatorcontrib>LYU SHIYUN</creatorcontrib><creatorcontrib>WANG JINQI</creatorcontrib><creatorcontrib>XIE WENHAN</creatorcontrib><creatorcontrib>ZHANG HAIPING</creatorcontrib><creatorcontrib>YANG RUNHUANG</creatorcontrib><creatorcontrib>YU SIQI</creatorcontrib><title>Image multi-task feature extraction and classification system based on deep learning</title><description>The invention discloses an image multi-task feature extraction and classification system based on deep learning. The system comprises an image preprocessing module, a general feature extraction module, a specific task feature extraction module and a classification module. The image preprocessing module is used for preprocessing a to-be-recognized medical image; the general feature extraction module is used for extracting general features; the specific task feature extraction module is used for extracting specific features; and the classification module is used for classifying the to-be-identified image according to the general features and the specific features. The design of the invention is a general framework, and supports wide image analysis tasks, such as image type identification, abnormal region detection in images, automatic evaluation of image features and the like, so that knowledge sharing and performance improvement in different tasks are realized. 本发明公开了一种基于深度学习的图像多任务特征提取及分类系统,包括:图像预处理模块、通用特征提取模块</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwkAQBa-xEPUf1g9IESNoSgmKNlbpw3r3Eo5cLuF2A_r3ivgBVsMMszT1beAONMxBfaYsPbVgnRMIT01s1Y-RODqygUV86y1_k7xEMdCDBY4-7oCJAjhFH7u1WbQcBJsfV2Z7OdfVNcM0NpCJLSK0qe55fizKw67cn4p_nje5PDkc</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>LI WEIMING</creator><creator>GUO XIUHUA</creator><creator>LYU SHIYUN</creator><creator>WANG JINQI</creator><creator>XIE WENHAN</creator><creator>ZHANG HAIPING</creator><creator>YANG RUNHUANG</creator><creator>YU SIQI</creator><scope>EVB</scope></search><sort><creationdate>20240726</creationdate><title>Image multi-task feature extraction and classification system based on deep learning</title><author>LI WEIMING ; GUO XIUHUA ; LYU SHIYUN ; WANG JINQI ; XIE WENHAN ; ZHANG HAIPING ; YANG RUNHUANG ; YU SIQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118397294A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI WEIMING</creatorcontrib><creatorcontrib>GUO XIUHUA</creatorcontrib><creatorcontrib>LYU SHIYUN</creatorcontrib><creatorcontrib>WANG JINQI</creatorcontrib><creatorcontrib>XIE WENHAN</creatorcontrib><creatorcontrib>ZHANG HAIPING</creatorcontrib><creatorcontrib>YANG RUNHUANG</creatorcontrib><creatorcontrib>YU SIQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI WEIMING</au><au>GUO XIUHUA</au><au>LYU SHIYUN</au><au>WANG JINQI</au><au>XIE WENHAN</au><au>ZHANG HAIPING</au><au>YANG RUNHUANG</au><au>YU SIQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image multi-task feature extraction and classification system based on deep learning</title><date>2024-07-26</date><risdate>2024</risdate><abstract>The invention discloses an image multi-task feature extraction and classification system based on deep learning. The system comprises an image preprocessing module, a general feature extraction module, a specific task feature extraction module and a classification module. The image preprocessing module is used for preprocessing a to-be-recognized medical image; the general feature extraction module is used for extracting general features; the specific task feature extraction module is used for extracting specific features; and the classification module is used for classifying the to-be-identified image according to the general features and the specific features. The design of the invention is a general framework, and supports wide image analysis tasks, such as image type identification, abnormal region detection in images, automatic evaluation of image features and the like, so that knowledge sharing and performance improvement in different tasks are realized. 本发明公开了一种基于深度学习的图像多任务特征提取及分类系统,包括:图像预处理模块、通用特征提取模块</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118397294A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Image multi-task feature extraction and classification system based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20WEIMING&rft.date=2024-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118397294A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true