PVC pipe size detection method and device based on high-resolution semantic segmentation

The invention discloses a PVC pipe size detection method and device based on high-resolution semantic segmentation, and the method comprises the steps: S01, obtaining an original image, and carrying out the transformation of the original image, and obtaining a to-be-segmented image; s02, the image t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIANG CHAOQIAN, LI RUOLONG, AI YANDI, XU XUESONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIANG CHAOQIAN
LI RUOLONG
AI YANDI
XU XUESONG
description The invention discloses a PVC pipe size detection method and device based on high-resolution semantic segmentation, and the method comprises the steps: S01, obtaining an original image, and carrying out the transformation of the original image, and obtaining a to-be-segmented image; s02, the image to be segmented is input into a high-resolution semantic segmentation model for semantic segmentation, the high-resolution semantic segmentation model is based on an ISDNet model, in an RAF module, attention layer parameters are generated for a shallow feature map and a deep feature map through two parallel branches respectively, attention layer parameters are fused through MLP layer fusion, and the attention layer parameters of shallow channels and deep channels are fused; fusing with a space attention module to obtain a final space attention parameter; step S03, extracting a pipeline edge region from a high-resolution semantic segmentation result; and step S04, extracting size information of the PVC pipeline from
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118397072A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118397072A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118397072A3</originalsourceid><addsrcrecordid>eNrjZIgICHNWKMgsSFUozqxKVUhJLUlNLsnMz1PITS3JyE9RSMxLAQqWZSanKiQlFqemKAClMjLTM3SLUovzc0rBSotTcxPzSjKTgYz03NS8kkSQKA8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzS0MLY0NzA3cjQmRg0AbwM6Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PVC pipe size detection method and device based on high-resolution semantic segmentation</title><source>esp@cenet</source><creator>XIANG CHAOQIAN ; LI RUOLONG ; AI YANDI ; XU XUESONG</creator><creatorcontrib>XIANG CHAOQIAN ; LI RUOLONG ; AI YANDI ; XU XUESONG</creatorcontrib><description>The invention discloses a PVC pipe size detection method and device based on high-resolution semantic segmentation, and the method comprises the steps: S01, obtaining an original image, and carrying out the transformation of the original image, and obtaining a to-be-segmented image; s02, the image to be segmented is input into a high-resolution semantic segmentation model for semantic segmentation, the high-resolution semantic segmentation model is based on an ISDNet model, in an RAF module, attention layer parameters are generated for a shallow feature map and a deep feature map through two parallel branches respectively, attention layer parameters are fused through MLP layer fusion, and the attention layer parameters of shallow channels and deep channels are fused; fusing with a space attention module to obtain a final space attention parameter; step S03, extracting a pipeline edge region from a high-resolution semantic segmentation result; and step S04, extracting size information of the PVC pipeline from</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118397072A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240726&amp;DB=EPODOC&amp;CC=CN&amp;NR=118397072A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIANG CHAOQIAN</creatorcontrib><creatorcontrib>LI RUOLONG</creatorcontrib><creatorcontrib>AI YANDI</creatorcontrib><creatorcontrib>XU XUESONG</creatorcontrib><title>PVC pipe size detection method and device based on high-resolution semantic segmentation</title><description>The invention discloses a PVC pipe size detection method and device based on high-resolution semantic segmentation, and the method comprises the steps: S01, obtaining an original image, and carrying out the transformation of the original image, and obtaining a to-be-segmented image; s02, the image to be segmented is input into a high-resolution semantic segmentation model for semantic segmentation, the high-resolution semantic segmentation model is based on an ISDNet model, in an RAF module, attention layer parameters are generated for a shallow feature map and a deep feature map through two parallel branches respectively, attention layer parameters are fused through MLP layer fusion, and the attention layer parameters of shallow channels and deep channels are fused; fusing with a space attention module to obtain a final space attention parameter; step S03, extracting a pipeline edge region from a high-resolution semantic segmentation result; and step S04, extracting size information of the PVC pipeline from</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgICHNWKMgsSFUozqxKVUhJLUlNLsnMz1PITS3JyE9RSMxLAQqWZSanKiQlFqemKAClMjLTM3SLUovzc0rBSotTcxPzSjKTgYz03NS8kkSQKA8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzS0MLY0NzA3cjQmRg0AbwM6Pw</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>XIANG CHAOQIAN</creator><creator>LI RUOLONG</creator><creator>AI YANDI</creator><creator>XU XUESONG</creator><scope>EVB</scope></search><sort><creationdate>20240726</creationdate><title>PVC pipe size detection method and device based on high-resolution semantic segmentation</title><author>XIANG CHAOQIAN ; LI RUOLONG ; AI YANDI ; XU XUESONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118397072A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIANG CHAOQIAN</creatorcontrib><creatorcontrib>LI RUOLONG</creatorcontrib><creatorcontrib>AI YANDI</creatorcontrib><creatorcontrib>XU XUESONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIANG CHAOQIAN</au><au>LI RUOLONG</au><au>AI YANDI</au><au>XU XUESONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PVC pipe size detection method and device based on high-resolution semantic segmentation</title><date>2024-07-26</date><risdate>2024</risdate><abstract>The invention discloses a PVC pipe size detection method and device based on high-resolution semantic segmentation, and the method comprises the steps: S01, obtaining an original image, and carrying out the transformation of the original image, and obtaining a to-be-segmented image; s02, the image to be segmented is input into a high-resolution semantic segmentation model for semantic segmentation, the high-resolution semantic segmentation model is based on an ISDNet model, in an RAF module, attention layer parameters are generated for a shallow feature map and a deep feature map through two parallel branches respectively, attention layer parameters are fused through MLP layer fusion, and the attention layer parameters of shallow channels and deep channels are fused; fusing with a space attention module to obtain a final space attention parameter; step S03, extracting a pipeline edge region from a high-resolution semantic segmentation result; and step S04, extracting size information of the PVC pipeline from</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118397072A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title PVC pipe size detection method and device based on high-resolution semantic segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIANG%20CHAOQIAN&rft.date=2024-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118397072A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true