Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment
The invention provides a multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment, and the method comprises the steps: carrying out the processing of historical power load data and historical weather data of a target region, and obtaining a periodic l...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MAO HAOCHUN WANG JUAN CHEN LU YUAN XIAODI TAN HUANZHEN CHEN SHUNFEI LIU HAO WANG WENHONG ZOU WEIBIN LUO WENFENG HU JIEQIANG |
description | The invention provides a multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment, and the method comprises the steps: carrying out the processing of historical power load data and historical weather data of a target region, and obtaining a periodic load component, a non-periodic load component, a weather load component and first feature data; sequentially inputting the aperiodic load components into the trained long-short-term memory network and the time domain convolutional network for prediction, and performing weighted fusion on prediction results to obtain a total prediction result of the aperiodic load components; fusing the weather load component and the first feature data, then inputting the fused weather load component and the first feature data into the trained long-short-term memory network and the time domain convolutional network in sequence for prediction, and carrying out weighted fusion on prediction results to obtain a total prediction result o |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118395384A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118395384A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118395384A3</originalsourceid><addsrcrecordid>eNqNzLEKwkAQBNA0FqL-w_oBKUIUYilBsdHKPhzZiS5cbs_cBn_fGPwAq2HgzSwzuY7eJGfpEZJocJ4YrfZRk9jUyQUmCQbv5YFg1I1fRlHfGMirY4oDWNoZ97Cn8rwZ4J2BCa9R4nRu62zROZ-w-eUq255P9_qSI2qDFF2LAGvqW1FU5WFfVrtj-Y_5AO_2Qd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment</title><source>esp@cenet</source><creator>MAO HAOCHUN ; WANG JUAN ; CHEN LU ; YUAN XIAODI ; TAN HUANZHEN ; CHEN SHUNFEI ; LIU HAO ; WANG WENHONG ; ZOU WEIBIN ; LUO WENFENG ; HU JIEQIANG</creator><creatorcontrib>MAO HAOCHUN ; WANG JUAN ; CHEN LU ; YUAN XIAODI ; TAN HUANZHEN ; CHEN SHUNFEI ; LIU HAO ; WANG WENHONG ; ZOU WEIBIN ; LUO WENFENG ; HU JIEQIANG</creatorcontrib><description>The invention provides a multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment, and the method comprises the steps: carrying out the processing of historical power load data and historical weather data of a target region, and obtaining a periodic load component, a non-periodic load component, a weather load component and first feature data; sequentially inputting the aperiodic load components into the trained long-short-term memory network and the time domain convolutional network for prediction, and performing weighted fusion on prediction results to obtain a total prediction result of the aperiodic load components; fusing the weather load component and the first feature data, then inputting the fused weather load component and the first feature data into the trained long-short-term memory network and the time domain convolutional network in sequence for prediction, and carrying out weighted fusion on prediction results to obtain a total prediction result o</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240726&DB=EPODOC&CC=CN&NR=118395384A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240726&DB=EPODOC&CC=CN&NR=118395384A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAO HAOCHUN</creatorcontrib><creatorcontrib>WANG JUAN</creatorcontrib><creatorcontrib>CHEN LU</creatorcontrib><creatorcontrib>YUAN XIAODI</creatorcontrib><creatorcontrib>TAN HUANZHEN</creatorcontrib><creatorcontrib>CHEN SHUNFEI</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>WANG WENHONG</creatorcontrib><creatorcontrib>ZOU WEIBIN</creatorcontrib><creatorcontrib>LUO WENFENG</creatorcontrib><creatorcontrib>HU JIEQIANG</creatorcontrib><title>Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment</title><description>The invention provides a multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment, and the method comprises the steps: carrying out the processing of historical power load data and historical weather data of a target region, and obtaining a periodic load component, a non-periodic load component, a weather load component and first feature data; sequentially inputting the aperiodic load components into the trained long-short-term memory network and the time domain convolutional network for prediction, and performing weighted fusion on prediction results to obtain a total prediction result of the aperiodic load components; fusing the weather load component and the first feature data, then inputting the fused weather load component and the first feature data into the trained long-short-term memory network and the time domain convolutional network in sequence for prediction, and carrying out weighted fusion on prediction results to obtain a total prediction result o</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLEKwkAQBNA0FqL-w_oBKUIUYilBsdHKPhzZiS5cbs_cBn_fGPwAq2HgzSwzuY7eJGfpEZJocJ4YrfZRk9jUyQUmCQbv5YFg1I1fRlHfGMirY4oDWNoZ97Cn8rwZ4J2BCa9R4nRu62zROZ-w-eUq255P9_qSI2qDFF2LAGvqW1FU5WFfVrtj-Y_5AO_2Qd0</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>MAO HAOCHUN</creator><creator>WANG JUAN</creator><creator>CHEN LU</creator><creator>YUAN XIAODI</creator><creator>TAN HUANZHEN</creator><creator>CHEN SHUNFEI</creator><creator>LIU HAO</creator><creator>WANG WENHONG</creator><creator>ZOU WEIBIN</creator><creator>LUO WENFENG</creator><creator>HU JIEQIANG</creator><scope>EVB</scope></search><sort><creationdate>20240726</creationdate><title>Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment</title><author>MAO HAOCHUN ; WANG JUAN ; CHEN LU ; YUAN XIAODI ; TAN HUANZHEN ; CHEN SHUNFEI ; LIU HAO ; WANG WENHONG ; ZOU WEIBIN ; LUO WENFENG ; HU JIEQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118395384A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MAO HAOCHUN</creatorcontrib><creatorcontrib>WANG JUAN</creatorcontrib><creatorcontrib>CHEN LU</creatorcontrib><creatorcontrib>YUAN XIAODI</creatorcontrib><creatorcontrib>TAN HUANZHEN</creatorcontrib><creatorcontrib>CHEN SHUNFEI</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>WANG WENHONG</creatorcontrib><creatorcontrib>ZOU WEIBIN</creatorcontrib><creatorcontrib>LUO WENFENG</creatorcontrib><creatorcontrib>HU JIEQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAO HAOCHUN</au><au>WANG JUAN</au><au>CHEN LU</au><au>YUAN XIAODI</au><au>TAN HUANZHEN</au><au>CHEN SHUNFEI</au><au>LIU HAO</au><au>WANG WENHONG</au><au>ZOU WEIBIN</au><au>LUO WENFENG</au><au>HU JIEQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment</title><date>2024-07-26</date><risdate>2024</risdate><abstract>The invention provides a multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment, and the method comprises the steps: carrying out the processing of historical power load data and historical weather data of a target region, and obtaining a periodic load component, a non-periodic load component, a weather load component and first feature data; sequentially inputting the aperiodic load components into the trained long-short-term memory network and the time domain convolutional network for prediction, and performing weighted fusion on prediction results to obtain a total prediction result of the aperiodic load components; fusing the weather load component and the first feature data, then inputting the fused weather load component and the first feature data into the trained long-short-term memory network and the time domain convolutional network in sequence for prediction, and carrying out weighted fusion on prediction results to obtain a total prediction result o</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118395384A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Multi-dimensional decomposition and intelligent fusion power load prediction method and related equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAO%20HAOCHUN&rft.date=2024-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118395384A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |