Demand side load prediction method and system, computer equipment and storage medium

The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DOU ZHENLAN, ZHAO JIANLI, DOU XUN, ZUO JUAN, PAN BO, LIU ZITENG, LIU XUERUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DOU ZHENLAN
ZHAO JIANLI
DOU XUN
ZUO JUAN
PAN BO
LIU ZITENG
LIU XUERUI
description The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118367534A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118367534A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118367534A3</originalsourceid><addsrcrecordid>eNqNi70OAiEQBmksjPoOa6_FBf9ac2qsrK6_EPhUkltAWArfXqM-gNUUMzNW3QFsgqPiHWiIxlHKcN6Kj4EYco-OPv5ZBLwgGzlVQSY8qk-MIF8tMZsb3ofzladqdDVDwezHiZqfjl17XiLFHiUZiwDp20vT7PRmu9arvf6neQGOGzjb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Demand side load prediction method and system, computer equipment and storage medium</title><source>esp@cenet</source><creator>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</creator><creatorcontrib>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</creatorcontrib><description>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118367534A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118367534A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DOU ZHENLAN</creatorcontrib><creatorcontrib>ZHAO JIANLI</creatorcontrib><creatorcontrib>DOU XUN</creatorcontrib><creatorcontrib>ZUO JUAN</creatorcontrib><creatorcontrib>PAN BO</creatorcontrib><creatorcontrib>LIU ZITENG</creatorcontrib><creatorcontrib>LIU XUERUI</creatorcontrib><title>Demand side load prediction method and system, computer equipment and storage medium</title><description>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70OAiEQBmksjPoOa6_FBf9ac2qsrK6_EPhUkltAWArfXqM-gNUUMzNW3QFsgqPiHWiIxlHKcN6Kj4EYco-OPv5ZBLwgGzlVQSY8qk-MIF8tMZsb3ofzladqdDVDwezHiZqfjl17XiLFHiUZiwDp20vT7PRmu9arvf6neQGOGzjb</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>DOU ZHENLAN</creator><creator>ZHAO JIANLI</creator><creator>DOU XUN</creator><creator>ZUO JUAN</creator><creator>PAN BO</creator><creator>LIU ZITENG</creator><creator>LIU XUERUI</creator><scope>EVB</scope></search><sort><creationdate>20240719</creationdate><title>Demand side load prediction method and system, computer equipment and storage medium</title><author>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118367534A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>DOU ZHENLAN</creatorcontrib><creatorcontrib>ZHAO JIANLI</creatorcontrib><creatorcontrib>DOU XUN</creatorcontrib><creatorcontrib>ZUO JUAN</creatorcontrib><creatorcontrib>PAN BO</creatorcontrib><creatorcontrib>LIU ZITENG</creatorcontrib><creatorcontrib>LIU XUERUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DOU ZHENLAN</au><au>ZHAO JIANLI</au><au>DOU XUN</au><au>ZUO JUAN</au><au>PAN BO</au><au>LIU ZITENG</au><au>LIU XUERUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Demand side load prediction method and system, computer equipment and storage medium</title><date>2024-07-19</date><risdate>2024</risdate><abstract>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118367534A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Demand side load prediction method and system, computer equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DOU%20ZHENLAN&rft.date=2024-07-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118367534A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true