Demand side load prediction method and system, computer equipment and storage medium
The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stat...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DOU ZHENLAN ZHAO JIANLI DOU XUN ZUO JUAN PAN BO LIU ZITENG LIU XUERUI |
description | The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118367534A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118367534A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118367534A3</originalsourceid><addsrcrecordid>eNqNi70OAiEQBmksjPoOa6_FBf9ac2qsrK6_EPhUkltAWArfXqM-gNUUMzNW3QFsgqPiHWiIxlHKcN6Kj4EYco-OPv5ZBLwgGzlVQSY8qk-MIF8tMZsb3ofzladqdDVDwezHiZqfjl17XiLFHiUZiwDp20vT7PRmu9arvf6neQGOGzjb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Demand side load prediction method and system, computer equipment and storage medium</title><source>esp@cenet</source><creator>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</creator><creatorcontrib>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</creatorcontrib><description>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240719&DB=EPODOC&CC=CN&NR=118367534A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240719&DB=EPODOC&CC=CN&NR=118367534A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DOU ZHENLAN</creatorcontrib><creatorcontrib>ZHAO JIANLI</creatorcontrib><creatorcontrib>DOU XUN</creatorcontrib><creatorcontrib>ZUO JUAN</creatorcontrib><creatorcontrib>PAN BO</creatorcontrib><creatorcontrib>LIU ZITENG</creatorcontrib><creatorcontrib>LIU XUERUI</creatorcontrib><title>Demand side load prediction method and system, computer equipment and storage medium</title><description>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70OAiEQBmksjPoOa6_FBf9ac2qsrK6_EPhUkltAWArfXqM-gNUUMzNW3QFsgqPiHWiIxlHKcN6Kj4EYco-OPv5ZBLwgGzlVQSY8qk-MIF8tMZsb3ofzladqdDVDwezHiZqfjl17XiLFHiUZiwDp20vT7PRmu9arvf6neQGOGzjb</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>DOU ZHENLAN</creator><creator>ZHAO JIANLI</creator><creator>DOU XUN</creator><creator>ZUO JUAN</creator><creator>PAN BO</creator><creator>LIU ZITENG</creator><creator>LIU XUERUI</creator><scope>EVB</scope></search><sort><creationdate>20240719</creationdate><title>Demand side load prediction method and system, computer equipment and storage medium</title><author>DOU ZHENLAN ; ZHAO JIANLI ; DOU XUN ; ZUO JUAN ; PAN BO ; LIU ZITENG ; LIU XUERUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118367534A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>DOU ZHENLAN</creatorcontrib><creatorcontrib>ZHAO JIANLI</creatorcontrib><creatorcontrib>DOU XUN</creatorcontrib><creatorcontrib>ZUO JUAN</creatorcontrib><creatorcontrib>PAN BO</creatorcontrib><creatorcontrib>LIU ZITENG</creatorcontrib><creatorcontrib>LIU XUERUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DOU ZHENLAN</au><au>ZHAO JIANLI</au><au>DOU XUN</au><au>ZUO JUAN</au><au>PAN BO</au><au>LIU ZITENG</au><au>LIU XUERUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Demand side load prediction method and system, computer equipment and storage medium</title><date>2024-07-19</date><risdate>2024</risdate><abstract>The invention discloses a demand side load prediction method and system, computer equipment and a storage medium, and relates to the technical field of power load prediction, and the method comprises the steps: obtaining historical demand side load data, and making a sample data set; performing stationarity analysis on the sample data set by using ADF test, decomposing an unstable data feature set by using STL, and creating an expanded feature data set; according to a pre-created LGBMRegressor model, the expanded feature data set is screened, and an optimal feature combination is selected; and inputting the obtained optimal feature combination into a DeepAR model to obtain a prediction result of the demand side load power, and carrying out evaluation analysis. According to the method, errors in model training are reduced, the credibility and stability of the model and the prediction accuracy of the demand side load power are improved, a more reliable reference basis is provided for actual operation, and optim</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118367534A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Demand side load prediction method and system, computer equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DOU%20ZHENLAN&rft.date=2024-07-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118367534A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |