Tea leaf grading picking method, device, equipment and medium

The invention relates to a tea leaf grading picking method, device and equipment and a medium. The method comprises the steps that images of tea leaves to be picked in a tea garden are obtained; performing target detection on the to-be-picked tea leaf image based on a pre-trained tea leaf target det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHEN ZHIYE, YANG JINPENG, MA RUIJUN, LIANG LINGMIN, YU JIANG, CHEN PING, ZHANG YOULIU, CHEN HAO, QI LONG, CAI YINGHU, YANG YUNJIN, ZHEN WENBIN, CHEN ZHIYING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHEN ZHIYE
YANG JINPENG
MA RUIJUN
LIANG LINGMIN
YU JIANG
CHEN PING
ZHANG YOULIU
CHEN HAO
QI LONG
CAI YINGHU
YANG YUNJIN
ZHEN WENBIN
CHEN ZHIYING
description The invention relates to a tea leaf grading picking method, device and equipment and a medium. The method comprises the steps that images of tea leaves to be picked in a tea garden are obtained; performing target detection on the to-be-picked tea leaf image based on a pre-trained tea leaf target detection model, and determining a tea leaf target detection frame in the to-be-picked tea leaf image; key point detection is carried out on the tea leaf target detection frame based on a pre-trained tea leaf picking point detection model, types of tea leaves in the to-be-picked tea leaf image and corresponding tea leaf coordinate information are determined, and the types of the tea leaves comprise one or more of single-bud tea leaves, one-bud one-leaf tea leaves and one-bud two-leaf tea leaves; the picking robot determines picking points corresponding to the single-bud tea leaves, the one-bud-one-leaf tea leaves and the one-bud-two-leaf tea leaves according to the types of the tea leaves and the corresponding coordin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118366027A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118366027A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118366027A3</originalsourceid><addsrcrecordid>eNrjZLANSU1UyElNTFNIL0pMycxLVyjITM4G0bmpJRn5KToKKallmcmpOgqphaWZBbmpeSUKiXkpQNmUzNJcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhhbGZmYGTuaEyMGgDAZC9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tea leaf grading picking method, device, equipment and medium</title><source>esp@cenet</source><creator>SHEN ZHIYE ; YANG JINPENG ; MA RUIJUN ; LIANG LINGMIN ; YU JIANG ; CHEN PING ; ZHANG YOULIU ; CHEN HAO ; QI LONG ; CAI YINGHU ; YANG YUNJIN ; ZHEN WENBIN ; CHEN ZHIYING</creator><creatorcontrib>SHEN ZHIYE ; YANG JINPENG ; MA RUIJUN ; LIANG LINGMIN ; YU JIANG ; CHEN PING ; ZHANG YOULIU ; CHEN HAO ; QI LONG ; CAI YINGHU ; YANG YUNJIN ; ZHEN WENBIN ; CHEN ZHIYING</creatorcontrib><description>The invention relates to a tea leaf grading picking method, device and equipment and a medium. The method comprises the steps that images of tea leaves to be picked in a tea garden are obtained; performing target detection on the to-be-picked tea leaf image based on a pre-trained tea leaf target detection model, and determining a tea leaf target detection frame in the to-be-picked tea leaf image; key point detection is carried out on the tea leaf target detection frame based on a pre-trained tea leaf picking point detection model, types of tea leaves in the to-be-picked tea leaf image and corresponding tea leaf coordinate information are determined, and the types of the tea leaves comprise one or more of single-bud tea leaves, one-bud one-leaf tea leaves and one-bud two-leaf tea leaves; the picking robot determines picking points corresponding to the single-bud tea leaves, the one-bud-one-leaf tea leaves and the one-bud-two-leaf tea leaves according to the types of the tea leaves and the corresponding coordin</description><language>chi ; eng</language><subject>AGRICULTURE ; ANIMAL HUSBANDRY ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; FISHING ; FORESTRY ; HARVESTING ; HUMAN NECESSITIES ; HUNTING ; MOWING ; PHYSICS ; TRAPPING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118366027A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118366027A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN ZHIYE</creatorcontrib><creatorcontrib>YANG JINPENG</creatorcontrib><creatorcontrib>MA RUIJUN</creatorcontrib><creatorcontrib>LIANG LINGMIN</creatorcontrib><creatorcontrib>YU JIANG</creatorcontrib><creatorcontrib>CHEN PING</creatorcontrib><creatorcontrib>ZHANG YOULIU</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>QI LONG</creatorcontrib><creatorcontrib>CAI YINGHU</creatorcontrib><creatorcontrib>YANG YUNJIN</creatorcontrib><creatorcontrib>ZHEN WENBIN</creatorcontrib><creatorcontrib>CHEN ZHIYING</creatorcontrib><title>Tea leaf grading picking method, device, equipment and medium</title><description>The invention relates to a tea leaf grading picking method, device and equipment and a medium. The method comprises the steps that images of tea leaves to be picked in a tea garden are obtained; performing target detection on the to-be-picked tea leaf image based on a pre-trained tea leaf target detection model, and determining a tea leaf target detection frame in the to-be-picked tea leaf image; key point detection is carried out on the tea leaf target detection frame based on a pre-trained tea leaf picking point detection model, types of tea leaves in the to-be-picked tea leaf image and corresponding tea leaf coordinate information are determined, and the types of the tea leaves comprise one or more of single-bud tea leaves, one-bud one-leaf tea leaves and one-bud two-leaf tea leaves; the picking robot determines picking points corresponding to the single-bud tea leaves, the one-bud-one-leaf tea leaves and the one-bud-two-leaf tea leaves according to the types of the tea leaves and the corresponding coordin</description><subject>AGRICULTURE</subject><subject>ANIMAL HUSBANDRY</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>FISHING</subject><subject>FORESTRY</subject><subject>HARVESTING</subject><subject>HUMAN NECESSITIES</subject><subject>HUNTING</subject><subject>MOWING</subject><subject>PHYSICS</subject><subject>TRAPPING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANSU1UyElNTFNIL0pMycxLVyjITM4G0bmpJRn5KToKKallmcmpOgqphaWZBbmpeSUKiXkpQNmUzNJcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhhbGZmYGTuaEyMGgDAZC9w</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>SHEN ZHIYE</creator><creator>YANG JINPENG</creator><creator>MA RUIJUN</creator><creator>LIANG LINGMIN</creator><creator>YU JIANG</creator><creator>CHEN PING</creator><creator>ZHANG YOULIU</creator><creator>CHEN HAO</creator><creator>QI LONG</creator><creator>CAI YINGHU</creator><creator>YANG YUNJIN</creator><creator>ZHEN WENBIN</creator><creator>CHEN ZHIYING</creator><scope>EVB</scope></search><sort><creationdate>20240719</creationdate><title>Tea leaf grading picking method, device, equipment and medium</title><author>SHEN ZHIYE ; YANG JINPENG ; MA RUIJUN ; LIANG LINGMIN ; YU JIANG ; CHEN PING ; ZHANG YOULIU ; CHEN HAO ; QI LONG ; CAI YINGHU ; YANG YUNJIN ; ZHEN WENBIN ; CHEN ZHIYING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118366027A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>AGRICULTURE</topic><topic>ANIMAL HUSBANDRY</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>FISHING</topic><topic>FORESTRY</topic><topic>HARVESTING</topic><topic>HUMAN NECESSITIES</topic><topic>HUNTING</topic><topic>MOWING</topic><topic>PHYSICS</topic><topic>TRAPPING</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN ZHIYE</creatorcontrib><creatorcontrib>YANG JINPENG</creatorcontrib><creatorcontrib>MA RUIJUN</creatorcontrib><creatorcontrib>LIANG LINGMIN</creatorcontrib><creatorcontrib>YU JIANG</creatorcontrib><creatorcontrib>CHEN PING</creatorcontrib><creatorcontrib>ZHANG YOULIU</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>QI LONG</creatorcontrib><creatorcontrib>CAI YINGHU</creatorcontrib><creatorcontrib>YANG YUNJIN</creatorcontrib><creatorcontrib>ZHEN WENBIN</creatorcontrib><creatorcontrib>CHEN ZHIYING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN ZHIYE</au><au>YANG JINPENG</au><au>MA RUIJUN</au><au>LIANG LINGMIN</au><au>YU JIANG</au><au>CHEN PING</au><au>ZHANG YOULIU</au><au>CHEN HAO</au><au>QI LONG</au><au>CAI YINGHU</au><au>YANG YUNJIN</au><au>ZHEN WENBIN</au><au>CHEN ZHIYING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tea leaf grading picking method, device, equipment and medium</title><date>2024-07-19</date><risdate>2024</risdate><abstract>The invention relates to a tea leaf grading picking method, device and equipment and a medium. The method comprises the steps that images of tea leaves to be picked in a tea garden are obtained; performing target detection on the to-be-picked tea leaf image based on a pre-trained tea leaf target detection model, and determining a tea leaf target detection frame in the to-be-picked tea leaf image; key point detection is carried out on the tea leaf target detection frame based on a pre-trained tea leaf picking point detection model, types of tea leaves in the to-be-picked tea leaf image and corresponding tea leaf coordinate information are determined, and the types of the tea leaves comprise one or more of single-bud tea leaves, one-bud one-leaf tea leaves and one-bud two-leaf tea leaves; the picking robot determines picking points corresponding to the single-bud tea leaves, the one-bud-one-leaf tea leaves and the one-bud-two-leaf tea leaves according to the types of the tea leaves and the corresponding coordin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118366027A
source esp@cenet
subjects AGRICULTURE
ANIMAL HUSBANDRY
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
FISHING
FORESTRY
HARVESTING
HUMAN NECESSITIES
HUNTING
MOWING
PHYSICS
TRAPPING
title Tea leaf grading picking method, device, equipment and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20ZHIYE&rft.date=2024-07-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118366027A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true