GIS multi-source partial discharge mode identification method and device, equipment and storage medium

The invention provides a GIS multi-source partial discharge mode recognition method and device, equipment and a storage medium, and belongs to the field of computer vision, and the method comprises the steps: building a backbone network of a YOLOv5 model based on a ShuffleNetV2 network, recognizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG YONGLIANG, LI JUNBIN, YU XINQIU, YANG KAI, CHEN QI, YI XIAOBO, LI WENLONG, JIANG WEI, WU YOUYU, WEN ZHAOLONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG YONGLIANG
LI JUNBIN
YU XINQIU
YANG KAI
CHEN QI
YI XIAOBO
LI WENLONG
JIANG WEI
WU YOUYU
WEN ZHAOLONG
description The invention provides a GIS multi-source partial discharge mode recognition method and device, equipment and a storage medium, and belongs to the field of computer vision, and the method comprises the steps: building a backbone network of a YOLOv5 model based on a ShuffleNetV2 network, recognizing a plurality of target modules from a large number of ShuffleNetV2 modules in the network based on the number and arrangement mode of shuffling units, and carrying out the recognition of the ShuffleNetV2 modules in the network, the redundant first convolution layer with the convolution kernel of 1 * 1 in the target module is removed through branch replacement, and the calculation amount of convolution calculation is reduced; according to the method, the to-be-detected PRPD atlas is input into the YOLOv5 model, the number of channels of an extracted module mixed feature map is small due to the fact that a first convolutional layer is reduced, the attention degree of high-dimensional semantic information is increased
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118366008A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118366008A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118366008A3</originalsourceid><addsrcrecordid>eNqNi7sKwkAQANNYiPoPa28gIRBsJfhqbLQPy-3GLOQe3u35_T7wA6wGhpl5MRzPV7B5UimTz9EwBIwqOAFJMiPGO4P1xCDETmUQgyregWUdPQE6AuKnGN4AP7IE-66-NqmP-JmZJNtlMRtwSrz6cVGsD_tbdyo5-J5TQMOOte8udb1t2raqtrvmn-YFVUQ_cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GIS multi-source partial discharge mode identification method and device, equipment and storage medium</title><source>esp@cenet</source><creator>HUANG YONGLIANG ; LI JUNBIN ; YU XINQIU ; YANG KAI ; CHEN QI ; YI XIAOBO ; LI WENLONG ; JIANG WEI ; WU YOUYU ; WEN ZHAOLONG</creator><creatorcontrib>HUANG YONGLIANG ; LI JUNBIN ; YU XINQIU ; YANG KAI ; CHEN QI ; YI XIAOBO ; LI WENLONG ; JIANG WEI ; WU YOUYU ; WEN ZHAOLONG</creatorcontrib><description>The invention provides a GIS multi-source partial discharge mode recognition method and device, equipment and a storage medium, and belongs to the field of computer vision, and the method comprises the steps: building a backbone network of a YOLOv5 model based on a ShuffleNetV2 network, recognizing a plurality of target modules from a large number of ShuffleNetV2 modules in the network based on the number and arrangement mode of shuffling units, and carrying out the recognition of the ShuffleNetV2 modules in the network, the redundant first convolution layer with the convolution kernel of 1 * 1 in the target module is removed through branch replacement, and the calculation amount of convolution calculation is reduced; according to the method, the to-be-detected PRPD atlas is input into the YOLOv5 model, the number of channels of an extracted module mixed feature map is small due to the fact that a first convolutional layer is reduced, the attention degree of high-dimensional semantic information is increased</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118366008A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240719&amp;DB=EPODOC&amp;CC=CN&amp;NR=118366008A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG YONGLIANG</creatorcontrib><creatorcontrib>LI JUNBIN</creatorcontrib><creatorcontrib>YU XINQIU</creatorcontrib><creatorcontrib>YANG KAI</creatorcontrib><creatorcontrib>CHEN QI</creatorcontrib><creatorcontrib>YI XIAOBO</creatorcontrib><creatorcontrib>LI WENLONG</creatorcontrib><creatorcontrib>JIANG WEI</creatorcontrib><creatorcontrib>WU YOUYU</creatorcontrib><creatorcontrib>WEN ZHAOLONG</creatorcontrib><title>GIS multi-source partial discharge mode identification method and device, equipment and storage medium</title><description>The invention provides a GIS multi-source partial discharge mode recognition method and device, equipment and a storage medium, and belongs to the field of computer vision, and the method comprises the steps: building a backbone network of a YOLOv5 model based on a ShuffleNetV2 network, recognizing a plurality of target modules from a large number of ShuffleNetV2 modules in the network based on the number and arrangement mode of shuffling units, and carrying out the recognition of the ShuffleNetV2 modules in the network, the redundant first convolution layer with the convolution kernel of 1 * 1 in the target module is removed through branch replacement, and the calculation amount of convolution calculation is reduced; according to the method, the to-be-detected PRPD atlas is input into the YOLOv5 model, the number of channels of an extracted module mixed feature map is small due to the fact that a first convolutional layer is reduced, the attention degree of high-dimensional semantic information is increased</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKwkAQANNYiPoPa28gIRBsJfhqbLQPy-3GLOQe3u35_T7wA6wGhpl5MRzPV7B5UimTz9EwBIwqOAFJMiPGO4P1xCDETmUQgyregWUdPQE6AuKnGN4AP7IE-66-NqmP-JmZJNtlMRtwSrz6cVGsD_tbdyo5-J5TQMOOte8udb1t2raqtrvmn-YFVUQ_cg</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>HUANG YONGLIANG</creator><creator>LI JUNBIN</creator><creator>YU XINQIU</creator><creator>YANG KAI</creator><creator>CHEN QI</creator><creator>YI XIAOBO</creator><creator>LI WENLONG</creator><creator>JIANG WEI</creator><creator>WU YOUYU</creator><creator>WEN ZHAOLONG</creator><scope>EVB</scope></search><sort><creationdate>20240719</creationdate><title>GIS multi-source partial discharge mode identification method and device, equipment and storage medium</title><author>HUANG YONGLIANG ; LI JUNBIN ; YU XINQIU ; YANG KAI ; CHEN QI ; YI XIAOBO ; LI WENLONG ; JIANG WEI ; WU YOUYU ; WEN ZHAOLONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118366008A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG YONGLIANG</creatorcontrib><creatorcontrib>LI JUNBIN</creatorcontrib><creatorcontrib>YU XINQIU</creatorcontrib><creatorcontrib>YANG KAI</creatorcontrib><creatorcontrib>CHEN QI</creatorcontrib><creatorcontrib>YI XIAOBO</creatorcontrib><creatorcontrib>LI WENLONG</creatorcontrib><creatorcontrib>JIANG WEI</creatorcontrib><creatorcontrib>WU YOUYU</creatorcontrib><creatorcontrib>WEN ZHAOLONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG YONGLIANG</au><au>LI JUNBIN</au><au>YU XINQIU</au><au>YANG KAI</au><au>CHEN QI</au><au>YI XIAOBO</au><au>LI WENLONG</au><au>JIANG WEI</au><au>WU YOUYU</au><au>WEN ZHAOLONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GIS multi-source partial discharge mode identification method and device, equipment and storage medium</title><date>2024-07-19</date><risdate>2024</risdate><abstract>The invention provides a GIS multi-source partial discharge mode recognition method and device, equipment and a storage medium, and belongs to the field of computer vision, and the method comprises the steps: building a backbone network of a YOLOv5 model based on a ShuffleNetV2 network, recognizing a plurality of target modules from a large number of ShuffleNetV2 modules in the network based on the number and arrangement mode of shuffling units, and carrying out the recognition of the ShuffleNetV2 modules in the network, the redundant first convolution layer with the convolution kernel of 1 * 1 in the target module is removed through branch replacement, and the calculation amount of convolution calculation is reduced; according to the method, the to-be-detected PRPD atlas is input into the YOLOv5 model, the number of channels of an extracted module mixed feature map is small due to the fact that a first convolutional layer is reduced, the attention degree of high-dimensional semantic information is increased</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118366008A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title GIS multi-source partial discharge mode identification method and device, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20YONGLIANG&rft.date=2024-07-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118366008A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true