Mountain torrent early warning method and system based on cross-source interpretable deep learning model
The invention relates to the technical field of mountain torrent early warning, and particularly discloses a mountain torrent early warning method and system based on a cross-source interpretability deep learning model, and the method comprises the steps: obtaining mountain torrent parameters and en...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YAO YANQIU XING PENGFEI LI QINGLIANG GENG QINGTIAN YAO YIFEI YU FANHUA |
description | The invention relates to the technical field of mountain torrent early warning, and particularly discloses a mountain torrent early warning method and system based on a cross-source interpretability deep learning model, and the method comprises the steps: obtaining mountain torrent parameters and environment parameters in an early warning region, and calculating the correlation degree of the mountain torrent parameters and the environment parameters; environment parameters are selected and combined according to the correlation degree, and corresponding mountain torrent parameters are connected to serve as samples of the early warning area; counting samples of different early warning areas, training a neural network model, and synchronously constructing an interpretation content library; and when the neural network model is applied, determining supplementary content of an output result according to the explanation content library. According to the method, other possible inputs of the same output can be obtaine |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118334830A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118334830A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118334830A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAQRuE0FqLeYTxAwLAWaSUoNlrZh0321wQ2M8vOBMntbbS3es3HWxfDTWY2PzKZ5Aw2gs9xobfPPPKLJtgggTwH0kUNE3VeEUiY-iyqpcqce9DIhpwyzHcRFIBEEb-HBMRtsXr6qNh9uyn2l_OjuZZI0kKT78GwtrlXVe3csXaHk_vHfABbaUDm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mountain torrent early warning method and system based on cross-source interpretable deep learning model</title><source>esp@cenet</source><creator>YAO YANQIU ; XING PENGFEI ; LI QINGLIANG ; GENG QINGTIAN ; YAO YIFEI ; YU FANHUA</creator><creatorcontrib>YAO YANQIU ; XING PENGFEI ; LI QINGLIANG ; GENG QINGTIAN ; YAO YIFEI ; YU FANHUA</creatorcontrib><description>The invention relates to the technical field of mountain torrent early warning, and particularly discloses a mountain torrent early warning method and system based on a cross-source interpretability deep learning model, and the method comprises the steps: obtaining mountain torrent parameters and environment parameters in an early warning region, and calculating the correlation degree of the mountain torrent parameters and the environment parameters; environment parameters are selected and combined according to the correlation degree, and corresponding mountain torrent parameters are connected to serve as samples of the early warning area; counting samples of different early warning areas, training a neural network model, and synchronously constructing an interpretation content library; and when the neural network model is applied, determining supplementary content of an output result according to the explanation content library. According to the method, other possible inputs of the same output can be obtaine</description><language>chi ; eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240712&DB=EPODOC&CC=CN&NR=118334830A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240712&DB=EPODOC&CC=CN&NR=118334830A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAO YANQIU</creatorcontrib><creatorcontrib>XING PENGFEI</creatorcontrib><creatorcontrib>LI QINGLIANG</creatorcontrib><creatorcontrib>GENG QINGTIAN</creatorcontrib><creatorcontrib>YAO YIFEI</creatorcontrib><creatorcontrib>YU FANHUA</creatorcontrib><title>Mountain torrent early warning method and system based on cross-source interpretable deep learning model</title><description>The invention relates to the technical field of mountain torrent early warning, and particularly discloses a mountain torrent early warning method and system based on a cross-source interpretability deep learning model, and the method comprises the steps: obtaining mountain torrent parameters and environment parameters in an early warning region, and calculating the correlation degree of the mountain torrent parameters and the environment parameters; environment parameters are selected and combined according to the correlation degree, and corresponding mountain torrent parameters are connected to serve as samples of the early warning area; counting samples of different early warning areas, training a neural network model, and synchronously constructing an interpretation content library; and when the neural network model is applied, determining supplementary content of an output result according to the explanation content library. According to the method, other possible inputs of the same output can be obtaine</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQRuE0FqLeYTxAwLAWaSUoNlrZh0321wQ2M8vOBMntbbS3es3HWxfDTWY2PzKZ5Aw2gs9xobfPPPKLJtgggTwH0kUNE3VeEUiY-iyqpcqce9DIhpwyzHcRFIBEEb-HBMRtsXr6qNh9uyn2l_OjuZZI0kKT78GwtrlXVe3csXaHk_vHfABbaUDm</recordid><startdate>20240712</startdate><enddate>20240712</enddate><creator>YAO YANQIU</creator><creator>XING PENGFEI</creator><creator>LI QINGLIANG</creator><creator>GENG QINGTIAN</creator><creator>YAO YIFEI</creator><creator>YU FANHUA</creator><scope>EVB</scope></search><sort><creationdate>20240712</creationdate><title>Mountain torrent early warning method and system based on cross-source interpretable deep learning model</title><author>YAO YANQIU ; XING PENGFEI ; LI QINGLIANG ; GENG QINGTIAN ; YAO YIFEI ; YU FANHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118334830A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>YAO YANQIU</creatorcontrib><creatorcontrib>XING PENGFEI</creatorcontrib><creatorcontrib>LI QINGLIANG</creatorcontrib><creatorcontrib>GENG QINGTIAN</creatorcontrib><creatorcontrib>YAO YIFEI</creatorcontrib><creatorcontrib>YU FANHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAO YANQIU</au><au>XING PENGFEI</au><au>LI QINGLIANG</au><au>GENG QINGTIAN</au><au>YAO YIFEI</au><au>YU FANHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mountain torrent early warning method and system based on cross-source interpretable deep learning model</title><date>2024-07-12</date><risdate>2024</risdate><abstract>The invention relates to the technical field of mountain torrent early warning, and particularly discloses a mountain torrent early warning method and system based on a cross-source interpretability deep learning model, and the method comprises the steps: obtaining mountain torrent parameters and environment parameters in an early warning region, and calculating the correlation degree of the mountain torrent parameters and the environment parameters; environment parameters are selected and combined according to the correlation degree, and corresponding mountain torrent parameters are connected to serve as samples of the early warning area; counting samples of different early warning areas, training a neural network model, and synchronously constructing an interpretation content library; and when the neural network model is applied, determining supplementary content of an output result according to the explanation content library. According to the method, other possible inputs of the same output can be obtaine</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118334830A |
source | esp@cenet |
subjects | ALARM SYSTEMS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING ORDER TELEGRAPHS PHYSICS SIGNALLING SIGNALLING OR CALLING SYSTEMS |
title | Mountain torrent early warning method and system based on cross-source interpretable deep learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAO%20YANQIU&rft.date=2024-07-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118334830A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |