AGV path planning method based on grey wolf optimization algorithm

The invention particularly relates to an AGV (Automatic Guided Vehicle) path planning method based on a grey wolf optimization algorithm. The method comprises the steps of constructing a mobile environment, setting a starting coordinate point and a target coordinate point of an AGV, adopting the gre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG KAI, CUI LINGXIAO, XU NING, ZHAO YANTAO, ZHANG ZHIJIAN, YAO SHENGPING, ZHANG HAITAO, LIU NA, FAN MINGYANG, FAN FULING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG KAI
CUI LINGXIAO
XU NING
ZHAO YANTAO
ZHANG ZHIJIAN
YAO SHENGPING
ZHANG HAITAO
LIU NA
FAN MINGYANG
FAN FULING
description The invention particularly relates to an AGV (Automatic Guided Vehicle) path planning method based on a grey wolf optimization algorithm. The method comprises the steps of constructing a mobile environment, setting a starting coordinate point and a target coordinate point of an AGV, adopting the grey wolf optimization algorithm, forming a fitness function by three target functions, synchronously updating positions of all grey wolf individuals in an iteration process, and finally outputting an optimal path. The optimal moving route of the AGV can be given in the three-dimensional space, and meanwhile the AGV is prevented from colliding and exceeding the space boundary. 本申请具体涉及一种基于灰狼优化算法的AGV小车路径规划方法,通过建构移动环境,设定AGV小车的起始坐标点和目标坐标点,采用灰狼优化算法,以三个目标函数组成适应度函数,迭代过程同步更新所有灰狼个体的位置,最终输出最优路径。本申请能够在三维空间内给出AGV小车的最佳移动路线,同时避免其发生碰撞和超出空间边界。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118331275A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118331275A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118331275A3</originalsourceid><addsrcrecordid>eNrjZHBydA9TKEgsyVAoyEnMy8vMS1fITS3JyE9RSEosTk1RyM9TSC9KrVQoz89JU8gvKMnMzaxKLMkECifmpOcXZZZk5PIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC2NjQyNzU0djYtQAABL5MeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AGV path planning method based on grey wolf optimization algorithm</title><source>esp@cenet</source><creator>ZHANG KAI ; CUI LINGXIAO ; XU NING ; ZHAO YANTAO ; ZHANG ZHIJIAN ; YAO SHENGPING ; ZHANG HAITAO ; LIU NA ; FAN MINGYANG ; FAN FULING</creator><creatorcontrib>ZHANG KAI ; CUI LINGXIAO ; XU NING ; ZHAO YANTAO ; ZHANG ZHIJIAN ; YAO SHENGPING ; ZHANG HAITAO ; LIU NA ; FAN MINGYANG ; FAN FULING</creatorcontrib><description>The invention particularly relates to an AGV (Automatic Guided Vehicle) path planning method based on a grey wolf optimization algorithm. The method comprises the steps of constructing a mobile environment, setting a starting coordinate point and a target coordinate point of an AGV, adopting the grey wolf optimization algorithm, forming a fitness function by three target functions, synchronously updating positions of all grey wolf individuals in an iteration process, and finally outputting an optimal path. The optimal moving route of the AGV can be given in the three-dimensional space, and meanwhile the AGV is prevented from colliding and exceeding the space boundary. 本申请具体涉及一种基于灰狼优化算法的AGV小车路径规划方法,通过建构移动环境,设定AGV小车的起始坐标点和目标坐标点,采用灰狼优化算法,以三个目标函数组成适应度函数,迭代过程同步更新所有灰狼个体的位置,最终输出最优路径。本申请能够在三维空间内给出AGV小车的最佳移动路线,同时避免其发生碰撞和超出空间边界。</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240712&amp;DB=EPODOC&amp;CC=CN&amp;NR=118331275A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240712&amp;DB=EPODOC&amp;CC=CN&amp;NR=118331275A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG KAI</creatorcontrib><creatorcontrib>CUI LINGXIAO</creatorcontrib><creatorcontrib>XU NING</creatorcontrib><creatorcontrib>ZHAO YANTAO</creatorcontrib><creatorcontrib>ZHANG ZHIJIAN</creatorcontrib><creatorcontrib>YAO SHENGPING</creatorcontrib><creatorcontrib>ZHANG HAITAO</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>FAN MINGYANG</creatorcontrib><creatorcontrib>FAN FULING</creatorcontrib><title>AGV path planning method based on grey wolf optimization algorithm</title><description>The invention particularly relates to an AGV (Automatic Guided Vehicle) path planning method based on a grey wolf optimization algorithm. The method comprises the steps of constructing a mobile environment, setting a starting coordinate point and a target coordinate point of an AGV, adopting the grey wolf optimization algorithm, forming a fitness function by three target functions, synchronously updating positions of all grey wolf individuals in an iteration process, and finally outputting an optimal path. The optimal moving route of the AGV can be given in the three-dimensional space, and meanwhile the AGV is prevented from colliding and exceeding the space boundary. 本申请具体涉及一种基于灰狼优化算法的AGV小车路径规划方法,通过建构移动环境,设定AGV小车的起始坐标点和目标坐标点,采用灰狼优化算法,以三个目标函数组成适应度函数,迭代过程同步更新所有灰狼个体的位置,最终输出最优路径。本申请能够在三维空间内给出AGV小车的最佳移动路线,同时避免其发生碰撞和超出空间边界。</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBydA9TKEgsyVAoyEnMy8vMS1fITS3JyE9RSEosTk1RyM9TSC9KrVQoz89JU8gvKMnMzaxKLMkECifmpOcXZZZk5PIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDC2NjQyNzU0djYtQAABL5MeM</recordid><startdate>20240712</startdate><enddate>20240712</enddate><creator>ZHANG KAI</creator><creator>CUI LINGXIAO</creator><creator>XU NING</creator><creator>ZHAO YANTAO</creator><creator>ZHANG ZHIJIAN</creator><creator>YAO SHENGPING</creator><creator>ZHANG HAITAO</creator><creator>LIU NA</creator><creator>FAN MINGYANG</creator><creator>FAN FULING</creator><scope>EVB</scope></search><sort><creationdate>20240712</creationdate><title>AGV path planning method based on grey wolf optimization algorithm</title><author>ZHANG KAI ; CUI LINGXIAO ; XU NING ; ZHAO YANTAO ; ZHANG ZHIJIAN ; YAO SHENGPING ; ZHANG HAITAO ; LIU NA ; FAN MINGYANG ; FAN FULING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118331275A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG KAI</creatorcontrib><creatorcontrib>CUI LINGXIAO</creatorcontrib><creatorcontrib>XU NING</creatorcontrib><creatorcontrib>ZHAO YANTAO</creatorcontrib><creatorcontrib>ZHANG ZHIJIAN</creatorcontrib><creatorcontrib>YAO SHENGPING</creatorcontrib><creatorcontrib>ZHANG HAITAO</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>FAN MINGYANG</creatorcontrib><creatorcontrib>FAN FULING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG KAI</au><au>CUI LINGXIAO</au><au>XU NING</au><au>ZHAO YANTAO</au><au>ZHANG ZHIJIAN</au><au>YAO SHENGPING</au><au>ZHANG HAITAO</au><au>LIU NA</au><au>FAN MINGYANG</au><au>FAN FULING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AGV path planning method based on grey wolf optimization algorithm</title><date>2024-07-12</date><risdate>2024</risdate><abstract>The invention particularly relates to an AGV (Automatic Guided Vehicle) path planning method based on a grey wolf optimization algorithm. The method comprises the steps of constructing a mobile environment, setting a starting coordinate point and a target coordinate point of an AGV, adopting the grey wolf optimization algorithm, forming a fitness function by three target functions, synchronously updating positions of all grey wolf individuals in an iteration process, and finally outputting an optimal path. The optimal moving route of the AGV can be given in the three-dimensional space, and meanwhile the AGV is prevented from colliding and exceeding the space boundary. 本申请具体涉及一种基于灰狼优化算法的AGV小车路径规划方法,通过建构移动环境,设定AGV小车的起始坐标点和目标坐标点,采用灰狼优化算法,以三个目标函数组成适应度函数,迭代过程同步更新所有灰狼个体的位置,最终输出最优路径。本申请能够在三维空间内给出AGV小车的最佳移动路线,同时避免其发生碰撞和超出空间边界。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118331275A
source esp@cenet
subjects CONTROLLING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title AGV path planning method based on grey wolf optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20KAI&rft.date=2024-07-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118331275A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true