Deep learning-based wheat growth and development prediction system in controlled environment
The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHAO HONG REN QIHONG LIU WULIN ZHANG LEI ZHANG AIHUA QI HUAXUE LI YAN |
description | The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118314957A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118314957A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118314957A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQRuE0FqLeYTxAihBFLSUqVlaWQlizf5KFzcyyOyR4exU8gNVrvjfPHicgkIeJ7LjLnybB0tTDKHVRJu3JsCWLEV7CAFYKEdY16oQpvZJiIMfUCGsU7z8zeHRR-GuX2aw1PmH16yJbX8736pojSI0UTAOG1tWtKPZlsTlsd8fyH_MGAcI8rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><source>esp@cenet</source><creator>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</creator><creatorcontrib>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</creatorcontrib><description>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240709&DB=EPODOC&CC=CN&NR=118314957A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240709&DB=EPODOC&CC=CN&NR=118314957A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>REN QIHONG</creatorcontrib><creatorcontrib>LIU WULIN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHANG AIHUA</creatorcontrib><creatorcontrib>QI HUAXUE</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><description>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQRuE0FqLeYTxAihBFLSUqVlaWQlizf5KFzcyyOyR4exU8gNVrvjfPHicgkIeJ7LjLnybB0tTDKHVRJu3JsCWLEV7CAFYKEdY16oQpvZJiIMfUCGsU7z8zeHRR-GuX2aw1PmH16yJbX8736pojSI0UTAOG1tWtKPZlsTlsd8fyH_MGAcI8rQ</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>ZHAO HONG</creator><creator>REN QIHONG</creator><creator>LIU WULIN</creator><creator>ZHANG LEI</creator><creator>ZHANG AIHUA</creator><creator>QI HUAXUE</creator><creator>LI YAN</creator><scope>EVB</scope></search><sort><creationdate>20240709</creationdate><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><author>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118314957A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>REN QIHONG</creatorcontrib><creatorcontrib>LIU WULIN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHANG AIHUA</creatorcontrib><creatorcontrib>QI HUAXUE</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO HONG</au><au>REN QIHONG</au><au>LIU WULIN</au><au>ZHANG LEI</au><au>ZHANG AIHUA</au><au>QI HUAXUE</au><au>LI YAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><date>2024-07-09</date><risdate>2024</risdate><abstract>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN118314957A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Deep learning-based wheat growth and development prediction system in controlled environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20HONG&rft.date=2024-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118314957A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |