Deep learning-based wheat growth and development prediction system in controlled environment

The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO HONG, REN QIHONG, LIU WULIN, ZHANG LEI, ZHANG AIHUA, QI HUAXUE, LI YAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO HONG
REN QIHONG
LIU WULIN
ZHANG LEI
ZHANG AIHUA
QI HUAXUE
LI YAN
description The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118314957A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118314957A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118314957A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQRuE0FqLeYTxAihBFLSUqVlaWQlizf5KFzcyyOyR4exU8gNVrvjfPHicgkIeJ7LjLnybB0tTDKHVRJu3JsCWLEV7CAFYKEdY16oQpvZJiIMfUCGsU7z8zeHRR-GuX2aw1PmH16yJbX8736pojSI0UTAOG1tWtKPZlsTlsd8fyH_MGAcI8rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><source>esp@cenet</source><creator>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</creator><creatorcontrib>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</creatorcontrib><description>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240709&amp;DB=EPODOC&amp;CC=CN&amp;NR=118314957A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240709&amp;DB=EPODOC&amp;CC=CN&amp;NR=118314957A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>REN QIHONG</creatorcontrib><creatorcontrib>LIU WULIN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHANG AIHUA</creatorcontrib><creatorcontrib>QI HUAXUE</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><description>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQRuE0FqLeYTxAihBFLSUqVlaWQlizf5KFzcyyOyR4exU8gNVrvjfPHicgkIeJ7LjLnybB0tTDKHVRJu3JsCWLEV7CAFYKEdY16oQpvZJiIMfUCGsU7z8zeHRR-GuX2aw1PmH16yJbX8736pojSI0UTAOG1tWtKPZlsTlsd8fyH_MGAcI8rQ</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>ZHAO HONG</creator><creator>REN QIHONG</creator><creator>LIU WULIN</creator><creator>ZHANG LEI</creator><creator>ZHANG AIHUA</creator><creator>QI HUAXUE</creator><creator>LI YAN</creator><scope>EVB</scope></search><sort><creationdate>20240709</creationdate><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><author>ZHAO HONG ; REN QIHONG ; LIU WULIN ; ZHANG LEI ; ZHANG AIHUA ; QI HUAXUE ; LI YAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118314957A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO HONG</creatorcontrib><creatorcontrib>REN QIHONG</creatorcontrib><creatorcontrib>LIU WULIN</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHANG AIHUA</creatorcontrib><creatorcontrib>QI HUAXUE</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO HONG</au><au>REN QIHONG</au><au>LIU WULIN</au><au>ZHANG LEI</au><au>ZHANG AIHUA</au><au>QI HUAXUE</au><au>LI YAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based wheat growth and development prediction system in controlled environment</title><date>2024-07-09</date><risdate>2024</risdate><abstract>The invention relates to the technical field of wheat growth and development prediction, and provides a deep learning-based controlled environment wheat growth and development prediction system, which comprises a data acquisition module, a growth analysis module, an intelligent prediction module and a user interface, and is characterized in that the data acquisition module is responsible for collecting multi-dimensional data related to wheat growth; the growth analysis module is used for deeply analyzing the data acquired from the data acquisition module, extracting key growth indexes and genetic characteristics and evaluating the influence of the factors on wheat growth; the intelligent prediction module uses a long-short-term memory recurrent neural network to comprehensively analyze the data provided by the growth analysis module so as to predict the growth and development stages of the wheat; the user interface provides a visual operation platform for a user, so that the user can input and query data, and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118314957A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Deep learning-based wheat growth and development prediction system in controlled environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20HONG&rft.date=2024-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118314957A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true