Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data

The invention discloses a big data-based meteorological coupling soil fertility tobacco single leaf weight prediction method. The method comprises the steps of obtaining meteorological data and soil fertility data in a prediction period; and inputting the meteorological data and the soil fertility d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZENG LIPING, WANG KEMIN, WU CHANGHANG, PENG YU, TAO YONG, WU ZHOU, WEI BIN, MU DONGSHENG, CHENG LI, XIA XIAOLING, WANG XING, XU JIAN, CHEN LIPING, LI XIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZENG LIPING
WANG KEMIN
WU CHANGHANG
PENG YU
TAO YONG
WU ZHOU
WEI BIN
MU DONGSHENG
CHENG LI
XIA XIAOLING
WANG XING
XU JIAN
CHEN LIPING
LI XIANG
description The invention discloses a big data-based meteorological coupling soil fertility tobacco single leaf weight prediction method. The method comprises the steps of obtaining meteorological data and soil fertility data in a prediction period; and inputting the meteorological data and the soil fertility data into a single-leaf prediction model, and calculating the single-leaf weight of the tobacco. According to the method, meteorological data and soil fertility data are combined, a Transform model effectively captures a long-distance dependency relationship between input features through a self-attention mechanism, the model can comprehensively understand and utilize interaction between meteorological data and soil data, compared with a traditional statistical prediction model, the method can more accurately predict the weight of a single tobacco leaf, and the method has the advantages that the method is simple and convenient to operate and high in practicability. Therefore, agricultural producers are helped to bet
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118312760A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118312760A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118312760A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAHvxIOof1gcI1oJ6laJ48tR72SabdGHthmRF_L2CPsDTMDDMvBo7HdA5hcJTFAIhDPAkjqNByuTZGesEd7JRPQxYyMPXSbOKRnYo4PSR5DOAoiwQKBsL2ws0wMARPBouq1lAKbT6cVGtL-euvW4oaU8loaOJrG9vdX1s6t1hvz01_zRvDydAXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data</title><source>esp@cenet</source><creator>ZENG LIPING ; WANG KEMIN ; WU CHANGHANG ; PENG YU ; TAO YONG ; WU ZHOU ; WEI BIN ; MU DONGSHENG ; CHENG LI ; XIA XIAOLING ; WANG XING ; XU JIAN ; CHEN LIPING ; LI XIANG</creator><creatorcontrib>ZENG LIPING ; WANG KEMIN ; WU CHANGHANG ; PENG YU ; TAO YONG ; WU ZHOU ; WEI BIN ; MU DONGSHENG ; CHENG LI ; XIA XIAOLING ; WANG XING ; XU JIAN ; CHEN LIPING ; LI XIANG</creatorcontrib><description>The invention discloses a big data-based meteorological coupling soil fertility tobacco single leaf weight prediction method. The method comprises the steps of obtaining meteorological data and soil fertility data in a prediction period; and inputting the meteorological data and the soil fertility data into a single-leaf prediction model, and calculating the single-leaf weight of the tobacco. According to the method, meteorological data and soil fertility data are combined, a Transform model effectively captures a long-distance dependency relationship between input features through a self-attention mechanism, the model can comprehensively understand and utilize interaction between meteorological data and soil data, compared with a traditional statistical prediction model, the method can more accurately predict the weight of a single tobacco leaf, and the method has the advantages that the method is simple and convenient to operate and high in practicability. Therefore, agricultural producers are helped to bet</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240709&amp;DB=EPODOC&amp;CC=CN&amp;NR=118312760A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240709&amp;DB=EPODOC&amp;CC=CN&amp;NR=118312760A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZENG LIPING</creatorcontrib><creatorcontrib>WANG KEMIN</creatorcontrib><creatorcontrib>WU CHANGHANG</creatorcontrib><creatorcontrib>PENG YU</creatorcontrib><creatorcontrib>TAO YONG</creatorcontrib><creatorcontrib>WU ZHOU</creatorcontrib><creatorcontrib>WEI BIN</creatorcontrib><creatorcontrib>MU DONGSHENG</creatorcontrib><creatorcontrib>CHENG LI</creatorcontrib><creatorcontrib>XIA XIAOLING</creatorcontrib><creatorcontrib>WANG XING</creatorcontrib><creatorcontrib>XU JIAN</creatorcontrib><creatorcontrib>CHEN LIPING</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><title>Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data</title><description>The invention discloses a big data-based meteorological coupling soil fertility tobacco single leaf weight prediction method. The method comprises the steps of obtaining meteorological data and soil fertility data in a prediction period; and inputting the meteorological data and the soil fertility data into a single-leaf prediction model, and calculating the single-leaf weight of the tobacco. According to the method, meteorological data and soil fertility data are combined, a Transform model effectively captures a long-distance dependency relationship between input features through a self-attention mechanism, the model can comprehensively understand and utilize interaction between meteorological data and soil data, compared with a traditional statistical prediction model, the method can more accurately predict the weight of a single tobacco leaf, and the method has the advantages that the method is simple and convenient to operate and high in practicability. Therefore, agricultural producers are helped to bet</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQAHvxIOof1gcI1oJ6laJ48tR72SabdGHthmRF_L2CPsDTMDDMvBo7HdA5hcJTFAIhDPAkjqNByuTZGesEd7JRPQxYyMPXSbOKRnYo4PSR5DOAoiwQKBsL2ws0wMARPBouq1lAKbT6cVGtL-euvW4oaU8loaOJrG9vdX1s6t1hvz01_zRvDydAXw</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>ZENG LIPING</creator><creator>WANG KEMIN</creator><creator>WU CHANGHANG</creator><creator>PENG YU</creator><creator>TAO YONG</creator><creator>WU ZHOU</creator><creator>WEI BIN</creator><creator>MU DONGSHENG</creator><creator>CHENG LI</creator><creator>XIA XIAOLING</creator><creator>WANG XING</creator><creator>XU JIAN</creator><creator>CHEN LIPING</creator><creator>LI XIANG</creator><scope>EVB</scope></search><sort><creationdate>20240709</creationdate><title>Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data</title><author>ZENG LIPING ; WANG KEMIN ; WU CHANGHANG ; PENG YU ; TAO YONG ; WU ZHOU ; WEI BIN ; MU DONGSHENG ; CHENG LI ; XIA XIAOLING ; WANG XING ; XU JIAN ; CHEN LIPING ; LI XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118312760A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZENG LIPING</creatorcontrib><creatorcontrib>WANG KEMIN</creatorcontrib><creatorcontrib>WU CHANGHANG</creatorcontrib><creatorcontrib>PENG YU</creatorcontrib><creatorcontrib>TAO YONG</creatorcontrib><creatorcontrib>WU ZHOU</creatorcontrib><creatorcontrib>WEI BIN</creatorcontrib><creatorcontrib>MU DONGSHENG</creatorcontrib><creatorcontrib>CHENG LI</creatorcontrib><creatorcontrib>XIA XIAOLING</creatorcontrib><creatorcontrib>WANG XING</creatorcontrib><creatorcontrib>XU JIAN</creatorcontrib><creatorcontrib>CHEN LIPING</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZENG LIPING</au><au>WANG KEMIN</au><au>WU CHANGHANG</au><au>PENG YU</au><au>TAO YONG</au><au>WU ZHOU</au><au>WEI BIN</au><au>MU DONGSHENG</au><au>CHENG LI</au><au>XIA XIAOLING</au><au>WANG XING</au><au>XU JIAN</au><au>CHEN LIPING</au><au>LI XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data</title><date>2024-07-09</date><risdate>2024</risdate><abstract>The invention discloses a big data-based meteorological coupling soil fertility tobacco single leaf weight prediction method. The method comprises the steps of obtaining meteorological data and soil fertility data in a prediction period; and inputting the meteorological data and the soil fertility data into a single-leaf prediction model, and calculating the single-leaf weight of the tobacco. According to the method, meteorological data and soil fertility data are combined, a Transform model effectively captures a long-distance dependency relationship between input features through a self-attention mechanism, the model can comprehensively understand and utilize interaction between meteorological data and soil data, compared with a traditional statistical prediction model, the method can more accurately predict the weight of a single tobacco leaf, and the method has the advantages that the method is simple and convenient to operate and high in practicability. Therefore, agricultural producers are helped to bet</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118312760A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Tobacco single leaf weight prediction method based on meteorological coupling soil fertility of big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZENG%20LIPING&rft.date=2024-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118312760A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true