Relation extraction method based on prompt learning in low-resource scene

The invention discloses a relation extraction method based on prompt learning in a low-resource scene, and the method comprises the following steps: 1), decomposing a complex relation into joint representation of a plurality of perspectives, the perspectives including a figure, a place, an action, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN SHIXUAN, XIE WENFENG, FAN CHENGHAO, CHEN DANGYANG, WEI WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN SHIXUAN
XIE WENFENG
FAN CHENGHAO
CHEN DANGYANG
WEI WEI
description The invention discloses a relation extraction method based on prompt learning in a low-resource scene, and the method comprises the following steps: 1), decomposing a complex relation into joint representation of a plurality of perspectives, the perspectives including a figure, a place, an action, and an active and passive relation; 2) using virtual words to represent each view angle relation obtained by splitting; 2.1) representing the representation relation of each view angle; 2.2) sampling the representation relation of each view angle; 2.3) using a mask pre-training model, creating m different relation virtual words for each relation r in a word list of the mask pre-training model, each relation virtual word paying attention to different view angles of one relation; and 3) according to the representation of each view angle relationship and the generation probability of each view angle relationship representation, obtaining a final complex relationship representation. According to the method, a relation e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118297065A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118297065A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118297065A3</originalsourceid><addsrcrecordid>eNrjZPAMSs1JLMnMz1NIrSgpSkwGM3NTSzLyUxSSEotTUxSA_IKi_NyCEoWc1MSivMy8dIXMPIWc_HLdotTi_NKi5FSF4uTUvFQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJAIUlQS7-xnaGhhZGluYGbqaEyMGgAHgDT4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Relation extraction method based on prompt learning in low-resource scene</title><source>esp@cenet</source><creator>FAN SHIXUAN ; XIE WENFENG ; FAN CHENGHAO ; CHEN DANGYANG ; WEI WEI</creator><creatorcontrib>FAN SHIXUAN ; XIE WENFENG ; FAN CHENGHAO ; CHEN DANGYANG ; WEI WEI</creatorcontrib><description>The invention discloses a relation extraction method based on prompt learning in a low-resource scene, and the method comprises the following steps: 1), decomposing a complex relation into joint representation of a plurality of perspectives, the perspectives including a figure, a place, an action, and an active and passive relation; 2) using virtual words to represent each view angle relation obtained by splitting; 2.1) representing the representation relation of each view angle; 2.2) sampling the representation relation of each view angle; 2.3) using a mask pre-training model, creating m different relation virtual words for each relation r in a word list of the mask pre-training model, each relation virtual word paying attention to different view angles of one relation; and 3) according to the representation of each view angle relationship and the generation probability of each view angle relationship representation, obtaining a final complex relationship representation. According to the method, a relation e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240705&amp;DB=EPODOC&amp;CC=CN&amp;NR=118297065A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240705&amp;DB=EPODOC&amp;CC=CN&amp;NR=118297065A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN SHIXUAN</creatorcontrib><creatorcontrib>XIE WENFENG</creatorcontrib><creatorcontrib>FAN CHENGHAO</creatorcontrib><creatorcontrib>CHEN DANGYANG</creatorcontrib><creatorcontrib>WEI WEI</creatorcontrib><title>Relation extraction method based on prompt learning in low-resource scene</title><description>The invention discloses a relation extraction method based on prompt learning in a low-resource scene, and the method comprises the following steps: 1), decomposing a complex relation into joint representation of a plurality of perspectives, the perspectives including a figure, a place, an action, and an active and passive relation; 2) using virtual words to represent each view angle relation obtained by splitting; 2.1) representing the representation relation of each view angle; 2.2) sampling the representation relation of each view angle; 2.3) using a mask pre-training model, creating m different relation virtual words for each relation r in a word list of the mask pre-training model, each relation virtual word paying attention to different view angles of one relation; and 3) according to the representation of each view angle relationship and the generation probability of each view angle relationship representation, obtaining a final complex relationship representation. According to the method, a relation e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAMSs1JLMnMz1NIrSgpSkwGM3NTSzLyUxSSEotTUxSA_IKi_NyCEoWc1MSivMy8dIXMPIWc_HLdotTi_NKi5FSF4uTUvFQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJAIUlQS7-xnaGhhZGluYGbqaEyMGgAHgDT4</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>FAN SHIXUAN</creator><creator>XIE WENFENG</creator><creator>FAN CHENGHAO</creator><creator>CHEN DANGYANG</creator><creator>WEI WEI</creator><scope>EVB</scope></search><sort><creationdate>20240705</creationdate><title>Relation extraction method based on prompt learning in low-resource scene</title><author>FAN SHIXUAN ; XIE WENFENG ; FAN CHENGHAO ; CHEN DANGYANG ; WEI WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118297065A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN SHIXUAN</creatorcontrib><creatorcontrib>XIE WENFENG</creatorcontrib><creatorcontrib>FAN CHENGHAO</creatorcontrib><creatorcontrib>CHEN DANGYANG</creatorcontrib><creatorcontrib>WEI WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN SHIXUAN</au><au>XIE WENFENG</au><au>FAN CHENGHAO</au><au>CHEN DANGYANG</au><au>WEI WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Relation extraction method based on prompt learning in low-resource scene</title><date>2024-07-05</date><risdate>2024</risdate><abstract>The invention discloses a relation extraction method based on prompt learning in a low-resource scene, and the method comprises the following steps: 1), decomposing a complex relation into joint representation of a plurality of perspectives, the perspectives including a figure, a place, an action, and an active and passive relation; 2) using virtual words to represent each view angle relation obtained by splitting; 2.1) representing the representation relation of each view angle; 2.2) sampling the representation relation of each view angle; 2.3) using a mask pre-training model, creating m different relation virtual words for each relation r in a word list of the mask pre-training model, each relation virtual word paying attention to different view angles of one relation; and 3) according to the representation of each view angle relationship and the generation probability of each view angle relationship representation, obtaining a final complex relationship representation. According to the method, a relation e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118297065A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Relation extraction method based on prompt learning in low-resource scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20SHIXUAN&rft.date=2024-07-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118297065A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true