Evaluation method of slope instability space-time probability based on machine learning

The invention discloses a side slope instability space-time probability evaluation method based on machine learning, which has better prediction precision and generalization ability, and comprises the following steps: Step 100, based on a Bootstrap algorithm, a GRU algorithm and a Kriging algorithm,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAO ZHERUI, WANG WUBIN, XIAO XIANPU, DENG ZHIXING, XIE KANG, LI JIASHEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAO ZHERUI
WANG WUBIN
XIAO XIANPU
DENG ZHIXING
XIE KANG
LI JIASHEN
description The invention discloses a side slope instability space-time probability evaluation method based on machine learning, which has better prediction precision and generalization ability, and comprises the following steps: Step 100, based on a Bootstrap algorithm, a GRU algorithm and a Kriging algorithm, establishing a BGK side slope displacement space-time uncertainty prediction model, and outputting a side slope displacement space-time uncertainty prediction result; step 200, excavating a slope displacement space-time uncertainty prediction result based on a reliability theory, establishing a slope instability space-time probability evaluation model, and outputting a slope instability space-time probability interval; and Step 300, constructing a slope full-section displacement-instability probability binary coupling analysis index DP based on the most disadvantageous principle, and judging the overall safety of the slope according to the value of the DP. 本发明公开了一种具有较好的预测精度和泛化能力的基于机器学习的边坡失稳时空概率的评估方法,包括以下步骤:Step100
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118296369A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118296369A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118296369A3</originalsourceid><addsrcrecordid>eNrjZAh3LUvMKU0syczPU8hNLcnIT1HIT1MozskvSFXIzCsuSUzKzMksqVQoLkhMTtUtycxNVSgoyk-CCSclFqcCdQD1JiZnZOalKuSkJhblZeal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz4VLBpeakl8c5-hoYWRpZmxmaWjsbEqAEAlQA6Xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Evaluation method of slope instability space-time probability based on machine learning</title><source>esp@cenet</source><creator>HAO ZHERUI ; WANG WUBIN ; XIAO XIANPU ; DENG ZHIXING ; XIE KANG ; LI JIASHEN</creator><creatorcontrib>HAO ZHERUI ; WANG WUBIN ; XIAO XIANPU ; DENG ZHIXING ; XIE KANG ; LI JIASHEN</creatorcontrib><description>The invention discloses a side slope instability space-time probability evaluation method based on machine learning, which has better prediction precision and generalization ability, and comprises the following steps: Step 100, based on a Bootstrap algorithm, a GRU algorithm and a Kriging algorithm, establishing a BGK side slope displacement space-time uncertainty prediction model, and outputting a side slope displacement space-time uncertainty prediction result; step 200, excavating a slope displacement space-time uncertainty prediction result based on a reliability theory, establishing a slope instability space-time probability evaluation model, and outputting a slope instability space-time probability interval; and Step 300, constructing a slope full-section displacement-instability probability binary coupling analysis index DP based on the most disadvantageous principle, and judging the overall safety of the slope according to the value of the DP. 本发明公开了一种具有较好的预测精度和泛化能力的基于机器学习的边坡失稳时空概率的评估方法,包括以下步骤:Step100</description><language>chi ; eng</language><subject>ALARM SYSTEMS ; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE ; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS ; TARIFF METERING APPARATUS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240705&amp;DB=EPODOC&amp;CC=CN&amp;NR=118296369A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240705&amp;DB=EPODOC&amp;CC=CN&amp;NR=118296369A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAO ZHERUI</creatorcontrib><creatorcontrib>WANG WUBIN</creatorcontrib><creatorcontrib>XIAO XIANPU</creatorcontrib><creatorcontrib>DENG ZHIXING</creatorcontrib><creatorcontrib>XIE KANG</creatorcontrib><creatorcontrib>LI JIASHEN</creatorcontrib><title>Evaluation method of slope instability space-time probability based on machine learning</title><description>The invention discloses a side slope instability space-time probability evaluation method based on machine learning, which has better prediction precision and generalization ability, and comprises the following steps: Step 100, based on a Bootstrap algorithm, a GRU algorithm and a Kriging algorithm, establishing a BGK side slope displacement space-time uncertainty prediction model, and outputting a side slope displacement space-time uncertainty prediction result; step 200, excavating a slope displacement space-time uncertainty prediction result based on a reliability theory, establishing a slope instability space-time probability evaluation model, and outputting a slope instability space-time probability interval; and Step 300, constructing a slope full-section displacement-instability probability binary coupling analysis index DP based on the most disadvantageous principle, and judging the overall safety of the slope according to the value of the DP. 本发明公开了一种具有较好的预测精度和泛化能力的基于机器学习的边坡失稳时空概率的评估方法,包括以下步骤:Step100</description><subject>ALARM SYSTEMS</subject><subject>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</subject><subject>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><subject>TARIFF METERING APPARATUS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh3LUvMKU0syczPU8hNLcnIT1HIT1MozskvSFXIzCsuSUzKzMksqVQoLkhMTtUtycxNVSgoyk-CCSclFqcCdQD1JiZnZOalKuSkJhblZeal8zCwpiXmFKfyQmluBkU31xBnD93Ugvz4VLBpeakl8c5-hoYWRpZmxmaWjsbEqAEAlQA6Xw</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>HAO ZHERUI</creator><creator>WANG WUBIN</creator><creator>XIAO XIANPU</creator><creator>DENG ZHIXING</creator><creator>XIE KANG</creator><creator>LI JIASHEN</creator><scope>EVB</scope></search><sort><creationdate>20240705</creationdate><title>Evaluation method of slope instability space-time probability based on machine learning</title><author>HAO ZHERUI ; WANG WUBIN ; XIAO XIANPU ; DENG ZHIXING ; XIE KANG ; LI JIASHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118296369A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ALARM SYSTEMS</topic><topic>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</topic><topic>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><topic>TARIFF METERING APPARATUS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HAO ZHERUI</creatorcontrib><creatorcontrib>WANG WUBIN</creatorcontrib><creatorcontrib>XIAO XIANPU</creatorcontrib><creatorcontrib>DENG ZHIXING</creatorcontrib><creatorcontrib>XIE KANG</creatorcontrib><creatorcontrib>LI JIASHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAO ZHERUI</au><au>WANG WUBIN</au><au>XIAO XIANPU</au><au>DENG ZHIXING</au><au>XIE KANG</au><au>LI JIASHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Evaluation method of slope instability space-time probability based on machine learning</title><date>2024-07-05</date><risdate>2024</risdate><abstract>The invention discloses a side slope instability space-time probability evaluation method based on machine learning, which has better prediction precision and generalization ability, and comprises the following steps: Step 100, based on a Bootstrap algorithm, a GRU algorithm and a Kriging algorithm, establishing a BGK side slope displacement space-time uncertainty prediction model, and outputting a side slope displacement space-time uncertainty prediction result; step 200, excavating a slope displacement space-time uncertainty prediction result based on a reliability theory, establishing a slope instability space-time probability evaluation model, and outputting a slope instability space-time probability interval; and Step 300, constructing a slope full-section displacement-instability probability binary coupling analysis index DP based on the most disadvantageous principle, and judging the overall safety of the slope according to the value of the DP. 本发明公开了一种具有较好的预测精度和泛化能力的基于机器学习的边坡失稳时空概率的评估方法,包括以下步骤:Step100</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118296369A
source esp@cenet
subjects ALARM SYSTEMS
ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE
MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
ORDER TELEGRAPHS
PHYSICS
SIGNALLING
SIGNALLING OR CALLING SYSTEMS
TARIFF METERING APPARATUS
TESTING
title Evaluation method of slope instability space-time probability based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAO%20ZHERUI&rft.date=2024-07-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118296369A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true