Lightweight road defect detection method based on dynamic deformable attention mechanism

The invention discloses a lightweight road defect detection method based on a dynamic deformable attention mechanism. The lightweight road defect detection method comprises the following steps: selecting an open road defect data set containing longitudinal cracks, transverse cracks, net cracks and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG DONGPING, HU HAIMIAO, LI ZHENG, BU YUZHEN, HE SHUJI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG DONGPING
HU HAIMIAO
LI ZHENG
BU YUZHEN
HE SHUJI
description The invention discloses a lightweight road defect detection method based on a dynamic deformable attention mechanism. The lightweight road defect detection method comprises the following steps: selecting an open road defect data set containing longitudinal cracks, transverse cracks, net cracks and pits as a training set, a verification set and a test set; building a lightweight road defect detection neural network model based on a dynamic deformable attention mechanism, using dynamic deformable convolution to improve the feature extraction capability of the network, and using a lightweight module to reduce the complexity of the whole network; training a road defect detection neural network model by using the training set and the verification set, storing weight parameters, performing final evaluation on the model under the weight parameter with the highest detection accuracy by using the test set, and finally determining the road defect detection model with the highest detection accuracy on the test set as an
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118279562A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118279562A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118279562A3</originalsourceid><addsrcrecordid>eNrjZIjwyUzPKClPBZEKRfmJKQopqWmpySVAqgRIZebnKeSmlmTkpygkJRanpigA-SmVeYm5mckghflFuYlJOakKiSUlqXlQxckZiXmZxbk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLI3NLUzMjRmBg1AM0sOr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight road defect detection method based on dynamic deformable attention mechanism</title><source>esp@cenet</source><creator>ZHANG DONGPING ; HU HAIMIAO ; LI ZHENG ; BU YUZHEN ; HE SHUJI</creator><creatorcontrib>ZHANG DONGPING ; HU HAIMIAO ; LI ZHENG ; BU YUZHEN ; HE SHUJI</creatorcontrib><description>The invention discloses a lightweight road defect detection method based on a dynamic deformable attention mechanism. The lightweight road defect detection method comprises the following steps: selecting an open road defect data set containing longitudinal cracks, transverse cracks, net cracks and pits as a training set, a verification set and a test set; building a lightweight road defect detection neural network model based on a dynamic deformable attention mechanism, using dynamic deformable convolution to improve the feature extraction capability of the network, and using a lightweight module to reduce the complexity of the whole network; training a road defect detection neural network model by using the training set and the verification set, storing weight parameters, performing final evaluation on the model under the weight parameter with the highest detection accuracy by using the test set, and finally determining the road defect detection model with the highest detection accuracy on the test set as an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240702&amp;DB=EPODOC&amp;CC=CN&amp;NR=118279562A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240702&amp;DB=EPODOC&amp;CC=CN&amp;NR=118279562A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG DONGPING</creatorcontrib><creatorcontrib>HU HAIMIAO</creatorcontrib><creatorcontrib>LI ZHENG</creatorcontrib><creatorcontrib>BU YUZHEN</creatorcontrib><creatorcontrib>HE SHUJI</creatorcontrib><title>Lightweight road defect detection method based on dynamic deformable attention mechanism</title><description>The invention discloses a lightweight road defect detection method based on a dynamic deformable attention mechanism. The lightweight road defect detection method comprises the following steps: selecting an open road defect data set containing longitudinal cracks, transverse cracks, net cracks and pits as a training set, a verification set and a test set; building a lightweight road defect detection neural network model based on a dynamic deformable attention mechanism, using dynamic deformable convolution to improve the feature extraction capability of the network, and using a lightweight module to reduce the complexity of the whole network; training a road defect detection neural network model by using the training set and the verification set, storing weight parameters, performing final evaluation on the model under the weight parameter with the highest detection accuracy by using the test set, and finally determining the road defect detection model with the highest detection accuracy on the test set as an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjwyUzPKClPBZEKRfmJKQopqWmpySVAqgRIZebnKeSmlmTkpygkJRanpigA-SmVeYm5mckghflFuYlJOakKiSUlqXlQxckZiXmZxbk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0MLI3NLUzMjRmBg1AM0sOr8</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>ZHANG DONGPING</creator><creator>HU HAIMIAO</creator><creator>LI ZHENG</creator><creator>BU YUZHEN</creator><creator>HE SHUJI</creator><scope>EVB</scope></search><sort><creationdate>20240702</creationdate><title>Lightweight road defect detection method based on dynamic deformable attention mechanism</title><author>ZHANG DONGPING ; HU HAIMIAO ; LI ZHENG ; BU YUZHEN ; HE SHUJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118279562A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG DONGPING</creatorcontrib><creatorcontrib>HU HAIMIAO</creatorcontrib><creatorcontrib>LI ZHENG</creatorcontrib><creatorcontrib>BU YUZHEN</creatorcontrib><creatorcontrib>HE SHUJI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG DONGPING</au><au>HU HAIMIAO</au><au>LI ZHENG</au><au>BU YUZHEN</au><au>HE SHUJI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight road defect detection method based on dynamic deformable attention mechanism</title><date>2024-07-02</date><risdate>2024</risdate><abstract>The invention discloses a lightweight road defect detection method based on a dynamic deformable attention mechanism. The lightweight road defect detection method comprises the following steps: selecting an open road defect data set containing longitudinal cracks, transverse cracks, net cracks and pits as a training set, a verification set and a test set; building a lightweight road defect detection neural network model based on a dynamic deformable attention mechanism, using dynamic deformable convolution to improve the feature extraction capability of the network, and using a lightweight module to reduce the complexity of the whole network; training a road defect detection neural network model by using the training set and the verification set, storing weight parameters, performing final evaluation on the model under the weight parameter with the highest detection accuracy by using the test set, and finally determining the road defect detection model with the highest detection accuracy on the test set as an</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118279562A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Lightweight road defect detection method based on dynamic deformable attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20DONGPING&rft.date=2024-07-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118279562A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true