New energy station abnormal data detection and diagnosis method and system fusing domain knowledge

The invention discloses a new energy station abnormal data detection and diagnosis method and system fusing domain knowledge. The method comprises the steps of obtaining new energy station data; constructing a feature project based on the physical characteristics of the new energy station data; an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU BINQI, CHEN HOUTAO, ZHU SHU, ZHU GUANGMING, HU JINHAO, ZHANG JUN, SHENG JIE, CAO WEI, XU MIN, WANG DING, CHEN LINYI, WAN KEYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU BINQI
CHEN HOUTAO
ZHU SHU
ZHU GUANGMING
HU JINHAO
ZHANG JUN
SHENG JIE
CAO WEI
XU MIN
WANG DING
CHEN LINYI
WAN KEYANG
description The invention discloses a new energy station abnormal data detection and diagnosis method and system fusing domain knowledge. The method comprises the steps of obtaining new energy station data; constructing a feature project based on the physical characteristics of the new energy station data; an abnormal value recognition model is constructed based on the new energy station data and feature engineering training by using an isolation forest algorithm, and then abnormal value recognition is performed on the new energy station data based on the abnormal value recognition model to obtain abnormal data; and diagnosing the abnormal data based on a pre-constructed expert knowledge base to obtain an abnormal type to which the abnormal data belongs, and outputting a diagnosis result. The method has the advantages of rapid and accurate diagnosis and the like. 本发明公开了一种融合领域知识的新能源场站异常数据检测诊断方法及系统,方法包括步骤:获取新能源场站数据;基于新能源场站数据的物理特性构建特征工程;使用隔离森林算法并基于新能源场站数据和特征工程训练构建得到异常值识别模型,再基于异常值识别模型对新能源场站数据进行异常值识别,得到异常数据;基于预先构建的专家知识库对异常数据进
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN118277928A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN118277928A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN118277928A3</originalsourceid><addsrcrecordid>eNqNjTEOgkAQAGksjPqH9QEWYAGWhmisqOzJwi3nBW6XsGsIv9eoD7CaZDLJrJOmohmIafILqKEFYcCGZYo4gENDcGTUfj07cAE9iwaFSPYQ95G6qFGE7qmBPTiJGBh6lnkg52mbrDoclHY_bpL99XIvbwcapSYdsX3_rS6rNC2yPD9lxfn4T_MCb78-bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>New energy station abnormal data detection and diagnosis method and system fusing domain knowledge</title><source>esp@cenet</source><creator>HU BINQI ; CHEN HOUTAO ; ZHU SHU ; ZHU GUANGMING ; HU JINHAO ; ZHANG JUN ; SHENG JIE ; CAO WEI ; XU MIN ; WANG DING ; CHEN LINYI ; WAN KEYANG</creator><creatorcontrib>HU BINQI ; CHEN HOUTAO ; ZHU SHU ; ZHU GUANGMING ; HU JINHAO ; ZHANG JUN ; SHENG JIE ; CAO WEI ; XU MIN ; WANG DING ; CHEN LINYI ; WAN KEYANG</creatorcontrib><description>The invention discloses a new energy station abnormal data detection and diagnosis method and system fusing domain knowledge. The method comprises the steps of obtaining new energy station data; constructing a feature project based on the physical characteristics of the new energy station data; an abnormal value recognition model is constructed based on the new energy station data and feature engineering training by using an isolation forest algorithm, and then abnormal value recognition is performed on the new energy station data based on the abnormal value recognition model to obtain abnormal data; and diagnosing the abnormal data based on a pre-constructed expert knowledge base to obtain an abnormal type to which the abnormal data belongs, and outputting a diagnosis result. The method has the advantages of rapid and accurate diagnosis and the like. 本发明公开了一种融合领域知识的新能源场站异常数据检测诊断方法及系统,方法包括步骤:获取新能源场站数据;基于新能源场站数据的物理特性构建特征工程;使用隔离森林算法并基于新能源场站数据和特征工程训练构建得到异常值识别模型,再基于异常值识别模型对新能源场站数据进行异常值识别,得到异常数据;基于预先构建的专家知识库对异常数据进</description><language>chi ; eng</language><subject>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS ; CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE ; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TARIFF METERING APPARATUS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240702&amp;DB=EPODOC&amp;CC=CN&amp;NR=118277928A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240702&amp;DB=EPODOC&amp;CC=CN&amp;NR=118277928A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU BINQI</creatorcontrib><creatorcontrib>CHEN HOUTAO</creatorcontrib><creatorcontrib>ZHU SHU</creatorcontrib><creatorcontrib>ZHU GUANGMING</creatorcontrib><creatorcontrib>HU JINHAO</creatorcontrib><creatorcontrib>ZHANG JUN</creatorcontrib><creatorcontrib>SHENG JIE</creatorcontrib><creatorcontrib>CAO WEI</creatorcontrib><creatorcontrib>XU MIN</creatorcontrib><creatorcontrib>WANG DING</creatorcontrib><creatorcontrib>CHEN LINYI</creatorcontrib><creatorcontrib>WAN KEYANG</creatorcontrib><title>New energy station abnormal data detection and diagnosis method and system fusing domain knowledge</title><description>The invention discloses a new energy station abnormal data detection and diagnosis method and system fusing domain knowledge. The method comprises the steps of obtaining new energy station data; constructing a feature project based on the physical characteristics of the new energy station data; an abnormal value recognition model is constructed based on the new energy station data and feature engineering training by using an isolation forest algorithm, and then abnormal value recognition is performed on the new energy station data based on the abnormal value recognition model to obtain abnormal data; and diagnosing the abnormal data based on a pre-constructed expert knowledge base to obtain an abnormal type to which the abnormal data belongs, and outputting a diagnosis result. The method has the advantages of rapid and accurate diagnosis and the like. 本发明公开了一种融合领域知识的新能源场站异常数据检测诊断方法及系统,方法包括步骤:获取新能源场站数据;基于新能源场站数据的物理特性构建特征工程;使用隔离森林算法并基于新能源场站数据和特征工程训练构建得到异常值识别模型,再基于异常值识别模型对新能源场站数据进行异常值识别,得到异常数据;基于预先构建的专家知识库对异常数据进</description><subject>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</subject><subject>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TARIFF METERING APPARATUS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOgkAQAGksjPqH9QEWYAGWhmisqOzJwi3nBW6XsGsIv9eoD7CaZDLJrJOmohmIafILqKEFYcCGZYo4gENDcGTUfj07cAE9iwaFSPYQ95G6qFGE7qmBPTiJGBh6lnkg52mbrDoclHY_bpL99XIvbwcapSYdsX3_rS6rNC2yPD9lxfn4T_MCb78-bw</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>HU BINQI</creator><creator>CHEN HOUTAO</creator><creator>ZHU SHU</creator><creator>ZHU GUANGMING</creator><creator>HU JINHAO</creator><creator>ZHANG JUN</creator><creator>SHENG JIE</creator><creator>CAO WEI</creator><creator>XU MIN</creator><creator>WANG DING</creator><creator>CHEN LINYI</creator><creator>WAN KEYANG</creator><scope>EVB</scope></search><sort><creationdate>20240702</creationdate><title>New energy station abnormal data detection and diagnosis method and system fusing domain knowledge</title><author>HU BINQI ; CHEN HOUTAO ; ZHU SHU ; ZHU GUANGMING ; HU JINHAO ; ZHANG JUN ; SHENG JIE ; CAO WEI ; XU MIN ; WANG DING ; CHEN LINYI ; WAN KEYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN118277928A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE</topic><topic>MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TARIFF METERING APPARATUS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HU BINQI</creatorcontrib><creatorcontrib>CHEN HOUTAO</creatorcontrib><creatorcontrib>ZHU SHU</creatorcontrib><creatorcontrib>ZHU GUANGMING</creatorcontrib><creatorcontrib>HU JINHAO</creatorcontrib><creatorcontrib>ZHANG JUN</creatorcontrib><creatorcontrib>SHENG JIE</creatorcontrib><creatorcontrib>CAO WEI</creatorcontrib><creatorcontrib>XU MIN</creatorcontrib><creatorcontrib>WANG DING</creatorcontrib><creatorcontrib>CHEN LINYI</creatorcontrib><creatorcontrib>WAN KEYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU BINQI</au><au>CHEN HOUTAO</au><au>ZHU SHU</au><au>ZHU GUANGMING</au><au>HU JINHAO</au><au>ZHANG JUN</au><au>SHENG JIE</au><au>CAO WEI</au><au>XU MIN</au><au>WANG DING</au><au>CHEN LINYI</au><au>WAN KEYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>New energy station abnormal data detection and diagnosis method and system fusing domain knowledge</title><date>2024-07-02</date><risdate>2024</risdate><abstract>The invention discloses a new energy station abnormal data detection and diagnosis method and system fusing domain knowledge. The method comprises the steps of obtaining new energy station data; constructing a feature project based on the physical characteristics of the new energy station data; an abnormal value recognition model is constructed based on the new energy station data and feature engineering training by using an isolation forest algorithm, and then abnormal value recognition is performed on the new energy station data based on the abnormal value recognition model to obtain abnormal data; and diagnosing the abnormal data based on a pre-constructed expert knowledge base to obtain an abnormal type to which the abnormal data belongs, and outputting a diagnosis result. The method has the advantages of rapid and accurate diagnosis and the like. 本发明公开了一种融合领域知识的新能源场站异常数据检测诊断方法及系统,方法包括步骤:获取新能源场站数据;基于新能源场站数据的物理特性构建特征工程;使用隔离森林算法并基于新能源场站数据和特征工程训练构建得到异常值识别模型,再基于异常值识别模型对新能源场站数据进行异常值识别,得到异常数据;基于预先构建的专家知识库对异常数据进</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN118277928A
source esp@cenet
subjects ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVEREDIN A SINGLE OTHER SUBCLASS
CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE
MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TARIFF METERING APPARATUS
TESTING
title New energy station abnormal data detection and diagnosis method and system fusing domain knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20BINQI&rft.date=2024-07-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN118277928A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true